Suppr超能文献

非小细胞肺癌分子生物标志物和通路的鉴定:系统生物医学视角的见解

Identification of molecular biomarkers and pathways of NSCLC: insights from a systems biomedicine perspective.

作者信息

Islam Rakibul, Ahmed Liton, Paul Bikash Kumar, Ahmed Kawsar, Bhuiyan Touhid, Moni Mohammad Ali

机构信息

Department of Software Engineering, Daffodil International University (DIU), Ashulia, Savar, Dhaka, 1342, Bangladesh.

Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.

出版信息

J Genet Eng Biotechnol. 2021 Mar 19;19(1):43. doi: 10.1186/s43141-021-00134-1.

Abstract

BACKGROUND

Worldwide, more than 80% of identified lung cancer cases are associated to the non-small cell lung cancer (NSCLC). We used microarray gene expression dataset GSE10245 to identify key biomarkers and associated pathways in NSCLC.

RESULTS

To collect Differentially Expressed Genes (DEGs) from the dataset GSE10245, we applied the R statistical language. Functional analysis was completed using the Database for Annotation Visualization and Integrated Discovery (DAVID) online repository. The DifferentialNet database was used to construct Protein-protein interaction (PPI) network and visualized it with the Cytoscape software. Using the Molecular Complex Detection (MCODE) method, we identify clusters from the constructed PPI network. Finally, survival analysis was performed to acquire the overall survival (OS) values of the key genes. One thousand eighty two DEGs were unveiled after applying statistical criterion. Functional analysis showed that overexpressed DEGs were greatly involved with epidermis development and keratinocyte differentiation; the under-expressed DEGs were principally associated with the positive regulation of nitric oxide biosynthetic process and signal transduction. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway investigation explored that the overexpressed DEGs were highly involved with the cell cycle; the under-expressed DEGs were involved with cell adhesion molecules. The PPI network was constructed with 474 nodes and 2233 connections.

CONCLUSIONS

Using the connectivity method, 12 genes were considered as hub genes. Survival analysis showed worse OS value for SFN, DSP, and PHGDH. Outcomes indicate that Stratifin may play a crucial role in the development of NSCLC.

摘要

背景

在全球范围内,超过80%已确诊的肺癌病例与非小细胞肺癌(NSCLC)相关。我们使用基因芯片基因表达数据集GSE10245来识别NSCLC中的关键生物标志物和相关通路。

结果

为了从数据集GSE10245中收集差异表达基因(DEG),我们应用了R统计语言。使用注释可视化与整合发现数据库(DAVID)在线资源库完成功能分析。使用DifferentialNet数据库构建蛋白质-蛋白质相互作用(PPI)网络,并使用Cytoscape软件进行可视化。使用分子复合物检测(MCODE)方法,我们从构建的PPI网络中识别出聚类。最后,进行生存分析以获取关键基因的总生存期(OS)值。应用统计标准后,共揭示了1082个DEG。功能分析表明,过表达的DEG与表皮发育和角质形成细胞分化密切相关;低表达的DEG主要与一氧化氮生物合成过程和信号转导的正调控相关。京都基因与基因组百科全书(KEGG)通路研究发现,过表达的DEG与细胞周期高度相关;低表达的DEG与细胞粘附分子相关。构建的PPI网络有474个节点和2233条连接。

结论

使用连通性方法,12个基因被视为枢纽基因。生存分析显示,SFN、DSP和PHGDH的OS值较差。结果表明,Stratifin可能在NSCLC的发展中起关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94a4/7979844/801e1e3ae7ec/43141_2021_134_Fig1_HTML.jpg

相似文献

1
Identification of molecular biomarkers and pathways of NSCLC: insights from a systems biomedicine perspective.
J Genet Eng Biotechnol. 2021 Mar 19;19(1):43. doi: 10.1186/s43141-021-00134-1.
4
Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
Mol Med Rep. 2018 Aug;18(2):1538-1550. doi: 10.3892/mmr.2018.9095. Epub 2018 May 29.
5
Bioinformatics analysis of fibroblasts exposed to TGF‑β at the early proliferation phase of wound repair.
Mol Med Rep. 2017 Dec;16(6):8146-8154. doi: 10.3892/mmr.2017.7619. Epub 2017 Sep 26.
6
Identification of key candidate tumor biomarkers in non-small-cell lung cancer by analysis.
Oncol Lett. 2020 Jan;19(1):1008-1016. doi: 10.3892/ol.2019.11169. Epub 2019 Dec 2.
8
Identification of hub genes with prognostic values in gastric cancer by bioinformatics analysis.
World J Surg Oncol. 2018 Jun 19;16(1):114. doi: 10.1186/s12957-018-1409-3.
9
Target gene screening and evaluation of prognostic values in non-small cell lung cancers by bioinformatics analysis.
Gene. 2018 Mar 20;647:306-311. doi: 10.1016/j.gene.2018.01.003. Epub 2018 Jan 3.
10
Bioinformatics analysis of gene expression profile data to screen key genes involved in intracranial aneurysms.
Mol Med Rep. 2019 Nov;20(5):4415-4424. doi: 10.3892/mmr.2019.10696. Epub 2019 Sep 23.

引用本文的文献

本文引用的文献

1
Computational identification of biomarker genes for lung cancer considering treatment and non-treatment studies.
BMC Bioinformatics. 2020 Dec 3;21(Suppl 9):218. doi: 10.1186/s12859-020-3524-8.
4
CDK1 serves as a potential prognostic biomarker and target for lung cancer.
J Int Med Res. 2020 Feb;48(2):300060519897508. doi: 10.1177/0300060519897508.
5
Bioinformatics analysis reveals 6 key biomarkers associated with non-small-cell lung cancer.
J Int Med Res. 2020 Mar;48(3):300060519887637. doi: 10.1177/0300060519887637. Epub 2019 Nov 28.
8
alterations and metastasis in estrogen receptor positive breast cancer.
J Cancer Metastasis Treat. 2019;5. doi: 10.20517/2394-4722.2019.12. Epub 2019 May 4.
9
Expression profile and prognostic value of SFN in human ovarian cancer.
Biosci Rep. 2019 May 2;39(5). doi: 10.1042/BSR20190100. Print 2019 May 31.
10
Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.
CA Cancer J Clin. 2018 Nov;68(6):394-424. doi: 10.3322/caac.21492. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验