Suppr超能文献

基于 MRI 图像的腮腺多形性腺瘤与腺淋巴瘤的放射组学模型鉴别。

Radiomic model for differentiating parotid pleomorphic adenoma from parotid adenolymphoma based on MRI images.

机构信息

The Department of Radiology, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.

The Department of Ultrasound, the First Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China.

出版信息

BMC Med Imaging. 2021 Mar 20;21(1):54. doi: 10.1186/s12880-021-00581-9.

Abstract

BACKGROUND

Distinguishing parotid pleomorphic adenoma (PPA) from parotid adenolymphoma (PA) is important for precision treatment, but there is a lack of readily available diagnostic methods. In this study, we aimed to explore the diagnostic value of radiomic signatures based on magnetic resonance imaging (MRI) for PPA and PA.

METHODS

The clinical characteristic and imaging data were retrospectively collected from 252 cases (126 cases in the training cohort and 76 patients in the validation cohort) in this study. Radiomic features were extracted from MRI scans, including T1-weighted imaging (T1WI) sequences and T2-weighted imaging (T2WI) sequences. The radiomic features from three sequences (T1WI, T2WI and T1WI combined with T2WI) were selected using univariate analysis, LASSO correlation and Spearman correlation. Then, we built six quantitative radiomic models using the selected features through two machine learning methods (multivariable logistic regression, MLR, and support vector machine, SVM). The performances of the six radiomic models were assessed and the diagnostic efficacies of the ideal T1-2WI radiomic model and the clinical model were compared.

RESULTS

The T1-2WI radiomic model using MLR showed optimal discriminatory ability (accuracy = 0.87 and 0.86, F-1 score = 0.88 and 0.86, sensitivity = 0.90 and 0.88, specificity = 0.82 and 0.80, positive predictive value = 0.86 and 0.84, negative predictive value = 0.86 and 0.84 in the training and validation cohorts, respectively) and its calibration was observed to be good (p > 0.05). The area under the curve (AUC) of the T1-2WI radiomic model was significantly better than that of the clinical model for both the training (0.95 vs. 0.67, p < 0.001) and validation (0.90 vs. 0.68, p = 0.001) cohorts.

CONCLUSIONS

The T1-2WI radiomic model in our study is complementary to the current knowledge of differential diagnosis for PPA and PA.

摘要

背景

鉴别腮腺多形性腺瘤(PPA)和腮腺腺淋巴瘤(PA)对于精准治疗很重要,但目前缺乏易于获取的诊断方法。本研究旨在探索基于磁共振成像(MRI)的放射组学特征对 PPA 和 PA 的诊断价值。

方法

本研究回顾性收集了 252 例患者(训练队列 126 例,验证队列 76 例)的临床特征和影像学资料。从 MRI 扫描中提取放射组学特征,包括 T1 加权成像(T1WI)序列和 T2 加权成像(T2WI)序列。使用单变量分析、LASSO 相关性和 Spearman 相关性对来自三个序列(T1WI、T2WI 和 T1WI 联合 T2WI)的放射组学特征进行选择。然后,我们使用两种机器学习方法(多变量逻辑回归,MLR 和支持向量机,SVM)通过选择的特征构建六个定量放射组学模型。评估六个放射组学模型的性能,并比较理想的 T1-2WI 放射组学模型和临床模型的诊断效能。

结果

使用 MLR 的 T1-2WI 放射组学模型表现出最佳的鉴别能力(在训练和验证队列中的准确性分别为 0.87 和 0.86,F-1 分数分别为 0.88 和 0.86,敏感度分别为 0.90 和 0.88,特异性分别为 0.82 和 0.80,阳性预测值分别为 0.86 和 0.84,阴性预测值分别为 0.86 和 0.84),其校准效果良好(p>0.05)。在训练(0.95 与 0.67,p<0.001)和验证(0.90 与 0.68,p=0.001)队列中,T1-2WI 放射组学模型的曲线下面积(AUC)均显著优于临床模型。

结论

本研究中的 T1-2WI 放射组学模型对 PPA 和 PA 的鉴别诊断具有补充作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0408/7981906/d405f3ef30f8/12880_2021_581_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验