Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain.
Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain; Ciber Enfermedades Respiratorias (CIBERES), Spain.
Pharmacol Ther. 2021 Sep;225:107835. doi: 10.1016/j.pharmthera.2021.107835. Epub 2021 Mar 18.
The large K channel functional diversity in the pulmonary vasculature results from the multitude of genes expressed encoding K channels, alternative RNA splicing, the post-transcriptional modifications, the presence of homomeric or heteromeric assemblies of the pore-forming α-subunits and the existence of accessory β-subunits modulating the functional properties of the channel. K channels can also be regulated at multiple levels by different factors controlling channel activity, trafficking, recycling and degradation. The activity of these channels is the primary determinant of membrane potential (Em) in pulmonary artery smooth muscle cells (PASMC), providing an essential regulatory mechanism to dilate or contract pulmonary arteries (PA). K channels are also expressed in pulmonary artery endothelial cells (PAEC) where they control resting Em, Ca entry and the production of different vasoactive factors. The activity of K channels is also important in regulating the population and phenotype of PASMC in the pulmonary vasculature, since they are involved in cell apoptosis, survival and proliferation. Notably, K channels play a major role in the development of pulmonary hypertension (PH). Impaired K channel activity in PH results from: 1) loss of function mutations, 2) downregulation of its expression, which involves transcription factors and microRNAs, or 3) decreased channel current as a result of increased vasoactive factors (e.g., hypoxia, 5-HT, endothelin-1 or thromboxane), exposure to drugs with channel-blocking properties, or by a reduction in factors that positively regulate K channel activity (e.g., NO and prostacyclin). Restoring K channel expression, its intracellular trafficking and the channel activity is an attractive therapeutic strategy in PH.
肺血管中大型 K 通道功能多样性源于众多编码 K 通道的基因表达、RNA 选择性剪接、转录后修饰、孔形成α亚基同源或异源组装以及调节通道功能特性的辅助β亚基的存在。K 通道还可以通过不同因素控制通道活性、运输、回收和降解来在多个水平上进行调节。这些通道的活性是肺动脉平滑肌细胞(PASMC)膜电位(Em)的主要决定因素,为肺动脉(PA)扩张或收缩提供了重要的调节机制。K 通道也在肺动脉内皮细胞(PAEC)中表达,它们控制着静息 Em、Ca 内流和不同血管活性因子的产生。K 通道的活性在调节肺血管中 PASMC 的群体和表型方面也很重要,因为它们参与细胞凋亡、存活和增殖。值得注意的是,K 通道在肺动脉高压(PH)的发展中起着重要作用。PH 中 K 通道活性的降低是由于:1)功能丧失突变,2)其表达的下调,这涉及转录因子和 microRNAs,或 3)由于血管活性因子(例如缺氧、5-HT、内皮素-1 或血栓素)的增加、具有通道阻断特性的药物暴露或调节 K 通道活性的正性因子(例如 NO 和前列环素)的减少导致的通道电流减少。恢复 K 通道的表达、其细胞内运输和通道活性是 PH 的一种有吸引力的治疗策略。