U.S. Geological Survey Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
U.S. Environmental Protection Agency Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.
Sci Total Environ. 2021 Jul 20;779:146284. doi: 10.1016/j.scitotenv.2021.146284. Epub 2021 Mar 13.
Industrial chemical contamination within coastal regions of the Great Lakes can pose serious risks to wetland habitat and offshore fisheries, often resulting in fish consumption advisories that directly affect human and wildlife health. Mercury (Hg) is a contaminant of concern in many of these highly urbanized and industrialized coastal regions, one of which is the Saint Louis River estuary (SLRE), the second largest tributary to Lake Superior. The SLRE has legacy Hg contamination that drives high Hg concentrations within sediments, but it is unclear whether legacy-derived Hg actively cycles within the food web. To understand the relative contributions of legacy versus contemporary Hg sources in coastal zones, Hg, carbon, and nitrogen stable isotope ratios were measured in sediments and food webs of SLRE and the Bad River, an estuarine reference site. Hg stable isotope values revealed that legacy contamination of Hg was widespread and heterogeneously distributed in sediments of SLRE, even in areas lacking industrial Hg sources. Similar isotope values were found in benthic invertebrates, riparian spiders, and prey fish from SLRE, confirming legacy Hg reaches the SLRE food web. Direct comparison of prey fish from SLRE and the Bad River confirmed that Hg isotope differences between the sites were not attributable to fractionation associated with rapid Hg bioaccumulation at estuarine mouths, but due to the presence of industrial Hg within SLRE. The Hg stable isotope values of game fish in both estuaries were dependent on fish migration and diet within the estuaries and extending into Lake Superior. These results indicate that Hg from legacy contamination is actively cycling within the SLRE food web and, through migration, this Hg also extends into Lake Superior via game fish. Understanding sources and the movement of Hg within the estuarine food web better informs restoration strategies for other impaired Great Lakes coastal zones.
五大湖沿海地区的工业化学污染会对湿地生境和近海渔业造成严重风险,经常导致鱼类消费建议,直接影响人类和野生动物健康。汞 (Hg) 是这些高度城市化和工业化沿海地区许多关注的污染物之一,其中之一是圣路易斯河口 (SLRE),苏必利尔湖的第二大支流。SLRE 受到 Hg 污染的影响,导致沉积物中 Hg 浓度升高,但尚不清楚是否存在与污染物有关的 Hg 在食物链中主动循环。为了了解沿海地区遗留 Hg 与当代 Hg 源的相对贡献,测量了 SLRE 和 Bad 河(一个河口参照点)沉积物和食物网中的 Hg、碳和氮稳定同位素比值。Hg 稳定同位素值表明,SLRE 沉积物中 Hg 的遗留污染广泛存在且分布不均匀,即使在缺乏工业 Hg 源的地区也是如此。在 SLRE 的底栖无脊椎动物、河岸蜘蛛和猎物鱼中也发现了相似的同位素值,证实了遗留 Hg 到达了 SLRE 食物网。直接比较来自 SLRE 和 Bad 河的猎物鱼证实,这些地点之间的 Hg 同位素差异不是由于河口处 Hg 快速生物积累相关的分馏作用引起的,而是由于 SLRE 中存在工业 Hg。两个河口的渔获物的 Hg 稳定同位素值取决于河口内的鱼类洄游和饮食,以及延伸到苏必利尔湖的范围。这些结果表明,来自遗留污染的 Hg 正在 SLRE 食物网中主动循环,并且通过洄游,这种 Hg 也通过渔获物延伸到苏必利尔湖中。更好地了解 Hg 在河口食物网中的来源和迁移,为其他受损的五大湖沿海地区的恢复策略提供了信息。