Suppr超能文献

基于近红外光谱和花粉授粉算法的茶氨酸含量预测

Prediction of tea theanine content using near-infrared spectroscopy and flower pollination algorithm.

作者信息

Ong Pauline, Chen Suming, Tsai Chao-Yin, Chuang Yung-Kun

机构信息

Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan; Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia.

Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Jul 5;255:119657. doi: 10.1016/j.saa.2021.119657. Epub 2021 Mar 9.

Abstract

In this study, near-infrared (NIR) spectroscopy was exploited for non-destructive determination of theanine content of oolong tea. The NIR spectral data (400-2500 nm) were correlated with the theanine level of 161 tea samples using partial least squares regression (PLSR) with different wavelengths selection methods, including the regression coefficient-based selection, uninformative variable elimination, variable importance in projection, selectivity ratio and flower pollination algorithm (FPA). The potential of using the FPA to select the discriminative wavelengths for PLSR was examined for the first time. The analysis showed that the PLSR with FPA method achieved better predictive results than the PLSR with full spectrum (PLSR-full). The developed simplified model using on FPA based on 12 latent variables and 89 selected wavelengths produced R-squared (R) value and root mean squared error (RMSE) of 0.9542, 0.8794 and 0.2045, 0.3219 for calibration and prediction, respectively. For PLSR-full, the R values of 0.9068, 0.8412 and RMSEs of 0.2916, 0.3693, were achieved for calibration and prediction. Also, the optimized model using FPA outperformed other wavelengths selection methods considered in this study. The obtained results indicated the feasibility of FPA to improve the predictability of the PLSR and reduce the model complexity. The nonlinear regression models of support vector machine regression and Gaussian process regression (GPR) were further utilized to evaluate the superiority of using the FPA in the wavelength selection. The results demonstrated that utilizing the wavelength selection method of FPA and nonlinear regression model of GPR could improve the predictive performance.

摘要

在本研究中,利用近红外(NIR)光谱法对乌龙茶中茶氨酸含量进行无损测定。使用偏最小二乘回归(PLSR)结合不同波长选择方法,将161个茶叶样品的近红外光谱数据(400 - 2500 nm)与茶氨酸水平相关联,这些方法包括基于回归系数的选择、无信息变量消除、投影变量重要性、选择性比率以及花授粉算法(FPA)。首次考察了使用FPA为PLSR选择判别性波长的潜力。分析表明,采用FPA方法的PLSR比全光谱PLSR(PLSR - full)取得了更好的预测结果。基于12个潜变量和89个选定波长构建的基于FPA的简化模型,在校准和预测时的决定系数(R)值和均方根误差(RMSE)分别为0.9542、0.8794和0.2045、0.3219。对于PLSR - full,校准和预测时的R值分别为0.9068、0.8412,RMSE分别为0.2916、0.3693。此外,使用FPA的优化模型优于本研究中考虑的其他波长选择方法。所得结果表明FPA在提高PLSR预测能力和降低模型复杂度方面的可行性。进一步利用支持向量机回归和高斯过程回归(GPR)的非线性回归模型来评估在波长选择中使用FPA的优越性。结果表明,利用FPA的波长选择方法和GPR的非线性回归模型可以提高预测性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验