Yu Qi, Wang Qi, Zhang Yafei, Chen Chongyan, Ryu Hyeyoung, Park Namu, Baek Jae-Eun, Li Keyuan, Wu Yifei, Li Daifeng, Xu Jian, Liu Meijun, Yang Jeremy J, Zhang Chenwei, Lu Chao, Zhang Peng, Li Xin, Chen Baitong, Ebeid Islam Akef, Fensel Julia, Min Chao, Zhai Yujia, Song Min, Ding Ying, Bu Yi
Institute of Medical Data Sciences, Shanxi Medical University, Taiyuan, China.
School of Management, Shanxi Medical University, Taiyuan, China.
Scientometrics. 2021;126(5):4491-4509. doi: 10.1007/s11192-021-03933-y. Epub 2021 Mar 12.
COVID-19 cases have surpassed the 109 + million markers, with deaths tallying up to 2.4 million. Tens of thousands of papers regarding COVID-19 have been published along with countless bibliometric analyses done on COVID-19 literature. Despite this, none of the analyses have focused on domain entities occurring in scientific publications. However, analysis of these bio-entities and the relations among them, a strategy called entity metrics, could offer more insights into knowledge usage and diffusion in specific cases. Thus, this paper presents an entitymetric analysis on COVID-19 literature. We construct an entity-entity co-occurrence network and employ network indicators to analyze the extracted entities. We find that ACE-2 and C-reactive protein are two very important genes and that lopinavir and ritonavir are two very important chemicals, regardless of the results from either ranking.
新冠病毒感染病例已超过1.09亿例,死亡人数累计达240万。关于新冠病毒的数万篇论文已发表,同时对新冠病毒相关文献进行了无数次文献计量分析。尽管如此,这些分析均未聚焦于科学出版物中出现的领域实体。然而,对这些生物实体及其之间的关系进行分析(一种称为实体计量的策略),可以在特定情况下为知识的使用和传播提供更多见解。因此,本文对新冠病毒相关文献进行了实体计量分析。我们构建了一个实体-实体共现网络,并使用网络指标来分析提取的实体。我们发现,无论排名结果如何,血管紧张素转化酶2(ACE-2)和C反应蛋白都是两个非常重要的基因,洛匹那韦和利托那韦是两种非常重要的化学物质。