文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过结合平面动态和断层成像对体内研究进行优化:在超顺磁纳米粒子系统上的工作流程评估。

Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System.

机构信息

3dmi Research Group, Department of Medical Physics, School of Medicine, University of Patras, Greece.

Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Italy.

出版信息

Mol Imaging. 2021 Jan 15;2021:6677847. doi: 10.1155/2021/6677847. eCollection 2021.


DOI:10.1155/2021/6677847
PMID:33746630
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7953590/
Abstract

Molecular imaging holds great promise in the noninvasive monitoring of several diseases with nanoparticles (NPs) being considered an efficient imaging tool for cancer, central nervous system, and heart- or bone-related diseases and for disorders of the mononuclear phagocytic system (MPS). In the present study, we used an iron-based nanoformulation, already established as an MRI/SPECT probe, as well as to load different biomolecules, to investigate its potential for nuclear planar and tomographic imaging of several target tissues following its distribution via different administration routes. Iron-doped hydroxyapatite NPs (FeHA) were radiolabeled with the single photon -emitting imaging agent [Tc]TcMDP. Administration of the radioactive NPs was performed via the following four delivery methods: (1) standard intravenous (iv) tail vein, (2) iv retro-orbital injection, (3) intratracheal (it) instillation, and (4) intrarectal installation (pr). Real-time, live, fast dynamic screening studies were performed on a dedicated bench top, mouse-sized, planar SPECT system from = 0 to 1 hour postinjection (p.i.), and consequently, tomographic SPECT/CT imaging was performed, for up to 24 hours p.i. The administration routes that have been studied provide a wide range of possible target tissues, for various diseases. Studies can be optimized following this workflow, as it is possible to quickly assess more parameters in a small number of animals (injection route, dosage, and fasting conditions). Thus, such an imaging protocol combines the strengths of both dynamic planar and tomographic imaging, and by using iron-based NPs of high biocompatibility along with the appropriate administration route, a potential diagnostic or therapeutic effect could be attained.

摘要

分子成像在利用纳米粒子(NPs)无创监测多种疾病方面具有巨大的潜力,被认为是癌症、中枢神经系统以及心脏或骨骼相关疾病和单核吞噬细胞系统(MPS)疾病的有效成像工具。在本研究中,我们使用了一种铁基纳米制剂,该制剂已经作为 MRI/SPECT 探针建立,并且可以负载不同的生物分子,以研究其通过不同给药途径分布后对几种靶组织进行核平面和断层成像的潜力。铁掺杂羟基磷灰石 NPs(FeHA)被单光子发射成像剂 [Tc]TcMDP 放射性标记。放射性 NPs 的给药通过以下四种给药方法进行:(1)标准静脉(iv)尾静脉,(2)iv 眶后注射,(3)气管内(it)滴注,和(4)直肠内安装(pr)。在专用台式、小鼠大小的平面 SPECT 系统上,从注射后 0 到 1 小时(p.i.)进行实时、活体、快速动态筛选研究,随后进行断层 SPECT/CT 成像,直至 24 小时 p.i. 已经研究的给药途径为各种疾病提供了广泛的可能的靶组织。可以按照此工作流程优化研究,可以在少数动物(注射途径、剂量和禁食条件)中快速评估更多参数。因此,这种成像方案结合了动态平面和断层成像的优势,并且通过使用高生物相容性的铁基 NPs 和适当的给药途径,可以实现潜在的诊断或治疗效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/ef7b5c5d6d8d/MOI2021-6677847.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/a6133b92647b/MOI2021-6677847.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/1ef0eb382e96/MOI2021-6677847.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/c8fa1b75b6be/MOI2021-6677847.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/df74afc5c9a9/MOI2021-6677847.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/90b53189c5d6/MOI2021-6677847.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/519d8f0eb87b/MOI2021-6677847.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/066b7a04f8a4/MOI2021-6677847.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/41c4e44c350f/MOI2021-6677847.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/ef7b5c5d6d8d/MOI2021-6677847.009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/a6133b92647b/MOI2021-6677847.001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/1ef0eb382e96/MOI2021-6677847.002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/c8fa1b75b6be/MOI2021-6677847.003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/df74afc5c9a9/MOI2021-6677847.004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/90b53189c5d6/MOI2021-6677847.005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/519d8f0eb87b/MOI2021-6677847.006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/066b7a04f8a4/MOI2021-6677847.007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/41c4e44c350f/MOI2021-6677847.008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb58/7953590/ef7b5c5d6d8d/MOI2021-6677847.009.jpg

相似文献

[1]
Optimization of In Vivo Studies by Combining Planar Dynamic and Tomographic Imaging: Workflow Evaluation on a Superparamagnetic Nanoparticles System.

Mol Imaging. 2021

[2]
On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging.

Acta Biomater. 2018-4-22

[3]
One pot synthesis of zwitteronic 99mTc doped ultrasmall iron oxide nanoparticles for SPECT/T1-weighted MR dual-modality tumor imaging.

Colloids Surf B Biointerfaces. 2021-1

[4]
Inflammatory bowel disease: MR- and SPECT/CT-based macrophage imaging for monitoring and evaluating disease activity in experimental mouse model--pilot study.

Radiology. 2014-1-15

[5]
Tc-Diethylenetriamine pentaacetic acid superparamagnetic iron oxide nanoparticles conjugated with lactobionic acid

2004

[6]
Single photon emission computed tomography for the diagnosis of coronary artery disease: an evidence-based analysis.

Ont Health Technol Assess Ser. 2010

[7]
More advantages in detecting bone and soft tissue metastases from prostate cancer using F-PSMA PET/CT.

Hell J Nucl Med. 2019

[8]
In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice.

Colloids Surf B Biointerfaces. 2019-3-28

[9]
The feasibility of NaGdF nanoparticles as an x-ray fluorescence computed tomography imaging probe for the liver and lungs.

Med Phys. 2019-12-10

[10]
Magnetic Labelling of Mesenchymal Stem Cells with Iron-Doped Hydroxyapatite Nanoparticles as Tool for Cell Therapy.

J Biomed Nanotechnol. 2016-5

引用本文的文献

[1]
Practical considerations for navigating the regulatory landscape of non-clinical studies for clinical translation of radiopharmaceuticals.

EJNMMI Radiopharm Chem. 2022-7-19

本文引用的文献

[1]
In vivo biodistribution of calcium phosphate nanoparticles after intravascular, intramuscular, intratumoral, and soft tissue administration in mice investigated by small animal PET/CT.

Acta Biomater. 2020-6

[2]
Nanomedicine Approaches for the Pulmonary Treatment of Cystic Fibrosis.

Front Bioeng Biotechnol. 2019-12-17

[3]
Preclinical Study in Vivo for New Pharmacological Approaches in Inflammatory Bowel Disease: A Systematic Review of Chronic Model of TNBS-Induced Colitis.

J Clin Med. 2019-10-1

[4]
Synthesis of Gold Nanoparticle: Peptide-Drug Conjugates for Targeted Drug Delivery.

Methods Mol Biol. 2020

[5]
Cationic carrier peptide enhances cerebrovascular targeting of nanoparticles in Alzheimer's disease brain.

Nanomedicine. 2018-10-6

[6]
Interaction of Folic Acid with Nanocrystalline Apatites and Extension to Methotrexate (Antifolate) in View of Anticancer Applications.

Langmuir. 2018-9-26

[7]
Towards clinically translatable nanodiagnostics.

Nat Rev Mater. 2017-5

[8]
On the use of superparamagnetic hydroxyapatite nanoparticles as an agent for magnetic and nuclear in vivo imaging.

Acta Biomater. 2018-4-22

[9]
Sequentially Responsive Therapeutic Peptide Assembling Nanoparticles for Dual-Targeted Cancer Immunotherapy.

Nano Lett. 2018-4-26

[10]
Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging.

Contrast Media Mol Imaging. 2017-11-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索