Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
Liverpool University Hospitals National Health Service (NHS) Foundation Trust, Liverpool, United Kingdom.
Front Immunol. 2021 Mar 4;12:649693. doi: 10.3389/fimmu.2021.649693. eCollection 2021.
Dysregulated neutrophil activation contributes to the pathogenesis of autoimmune diseases including rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Neutrophil-derived reactive oxygen species (ROS) and granule proteases are implicated in damage to and destruction of host tissues in both conditions (cartilage in RA, vascular tissue in SLE) and also in the pathogenic post-translational modification of DNA and proteins. Neutrophil-derived cytokines and chemokines regulate both the innate and adaptive immune responses in RA and SLE, and neutrophil extracellular traps (NETs) expose nuclear neoepitopes (citrullinated proteins in RA, double-stranded DNA and nuclear proteins in SLE) to the immune system, initiating the production of auto-antibodies (ACPA in RA, anti-dsDNA and anti-acetylated/methylated histones in SLE). Neutrophil apoptosis is dysregulated in both conditions: in RA, delayed apoptosis within synovial joints contributes to chronic inflammation, immune cell recruitment and prolonged release of proteolytic enzymes, whereas in SLE enhanced apoptosis leads to increased apoptotic burden associated with development of anti-nuclear auto-antibodies. An unbalanced energy metabolism in SLE and RA neutrophils contributes to the pathology of both diseases; increased hypoxia and glycolysis in RA drives neutrophil activation and NET production, whereas decreased redox capacity increases ROS-mediated damage in SLE. Neutrophil low-density granulocytes (LDGs), present in high numbers in the blood of both RA and SLE patients, have opposing phenotypes contributing to clinical manifestations of each disease. In this review we will describe the complex and contrasting phenotype of neutrophils and LDGs in RA and SLE and discuss their discrete roles in the pathogenesis of each condition. We will also review our current understanding of transcriptomic and metabolomic regulation of neutrophil phenotype in RA and SLE and discuss opportunities for therapeutic targeting of neutrophil activation in inflammatory auto-immune disease.
中性粒细胞激活失调导致包括类风湿关节炎(RA)和系统性红斑狼疮(SLE)在内的自身免疫性疾病的发病机制。中性粒细胞衍生的活性氧(ROS)和颗粒蛋白酶参与了这两种疾病(RA 中的软骨、SLE 中的血管组织)中宿主组织的损伤和破坏,也参与了 DNA 和蛋白质的致病翻译后修饰。中性粒细胞衍生的细胞因子和趋化因子调节 RA 和 SLE 中的固有和适应性免疫反应,中性粒细胞细胞外陷阱(NETs)将核新表位(RA 中的瓜氨酸化蛋白、SLE 中的双链 DNA 和核蛋白)暴露于免疫系统,引发自身抗体的产生(RA 中的 ACPA、SLE 中的抗 dsDNA 和抗乙酰化/甲基化组蛋白)。这两种疾病中的中性粒细胞凋亡都失调:在 RA 中,滑膜关节内的延迟凋亡导致慢性炎症、免疫细胞募集和蛋白酶的持续释放,而在 SLE 中,增强的凋亡导致与抗核自身抗体发展相关的凋亡负担增加。SLE 和 RA 中性粒细胞的不平衡能量代谢导致两种疾病的病理;RA 中的缺氧和糖酵解增加驱动中性粒细胞激活和 NET 产生,而还原能力降低增加了 SLE 中 ROS 介导的损伤。RA 和 SLE 患者血液中大量存在的低密粒细胞(LDG)具有相反的表型,这有助于每种疾病的临床表现。在这篇综述中,我们将描述 RA 和 SLE 中性粒细胞和 LDG 的复杂和对比表型,并讨论它们在每种疾病发病机制中的独特作用。我们还将回顾我们目前对 RA 和 SLE 中性粒细胞表型转录组和代谢组调节的理解,并讨论在炎症性自身免疫性疾病中靶向中性粒细胞激活的治疗机会。