Li Fangyu, Xie Rui, Wang Zengyan, Guo Lulu, Ye Jin, Ma Ping, Song WenZhan
Center for Cyber-Physical Systems, University of Georgia, Athens, GA 30602, USA.
Department of Statistics and Data Science, University of Central Florida, Orlando, FL 32816 USA.
IEEE Internet Things J. 2020 May;7(5):4387-4394. doi: 10.1109/jiot.2019.2962788. Epub 2019 Dec 27.
Internet of Things (IoT) enables extensive connections between cyber and physical "things". Nevertheless, the streaming data among IoT sensors bring "big data" issues, for example, large data volumes, data redundancy, lack of scalability and so on. Under "big data" circumstances, IoT system monitoring becomes a challenge. Furthermore, cyberattacks which threaten IoT security are hard to be detected. In this paper, we propose an online distributed IoT security monitoring algorithm (ODIS). An advanced influential point selection operation extracts important information from multidimensional time series data across distributed sensor nodes based on the spatial and temporal data dependence structure. Then, an accurate data structure model is constructed to capture the IoT system behaviors. Next, hypothesis testing is carried out to quantify the uncertainty of the monitoring tasks. Besides, the distributed system architecture solves the scalability issue. Using a real sensor network testbed, we commit cyberattacks to an IoT system with different patterns and strengths. The proposed ODIS algorithm demonstrates promising detection and monitoring performances.
物联网(IoT)实现了网络与物理“事物”之间的广泛连接。然而,物联网传感器之间的流数据带来了“大数据”问题,例如,数据量巨大、数据冗余、缺乏可扩展性等。在“大数据”环境下,物联网系统监控成为一项挑战。此外,威胁物联网安全的网络攻击很难被检测到。在本文中,我们提出了一种在线分布式物联网安全监控算法(ODIS)。一种先进的影响点选择操作基于空间和时间数据依赖结构从分布式传感器节点的多维时间序列数据中提取重要信息。然后,构建一个精确的数据结构模型来捕获物联网系统行为。接下来,进行假设检验以量化监控任务的不确定性。此外,分布式系统架构解决了可扩展性问题。使用真实的传感器网络测试平台,我们以不同的模式和强度对一个物联网系统实施网络攻击。所提出的ODIS算法展示出了良好的检测和监控性能。