Suppr超能文献

从非人类视角看动物行为与动物个性:借助机器获取帮助。

Animal behavior and animal personality from a non-human perspective: Getting help from the machine.

作者信息

Forkosh Oren

机构信息

Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 761001, Israel.

出版信息

Patterns (N Y). 2021 Mar 12;2(3):100194. doi: 10.1016/j.patter.2020.100194.

Abstract

We can now track the position of every fly's leg or immerse a tiny fish inside a virtual world by monitoring its gaze in real time. Yet capturing animals' posture or gaze is not like understanding their behavior. Instead, behaviors are still often interpreted by human observers in an anthropomorphic manner. Even newer tools that automatically classify behaviors rely on human observers for the choice of behaviors. In this perspective, we suggest a roadmap toward a "human-free" interpretation of behavior. We present several recent advances, including our recent work on animal personalities. Personality both underlies behavioral differences among individuals and is consistent over time. A mathematical formulation of this idea has allowed us to measure mouse traits objectively, map behaviors across species (humans included), and explore the biological basis of behavior. Our goal is to enable "machine translation" of raw movement data into intelligible human concepts en route to improving our understanding of animals and people.

摘要

我们现在可以通过实时监测每只苍蝇腿部的位置,或者将一条小鱼沉浸在虚拟世界中。然而,捕捉动物的姿势或视线并不等同于理解它们的行为。相反,人类观察者仍然常常以拟人化的方式来解读行为。即使是那些能够自动对行为进行分类的更新型工具,在行为选择上也依赖于人类观察者。从这个角度来看,我们提出了一条通往行为“无人类”解读的路线图。我们展示了几项近期的进展,包括我们最近关于动物个性的研究。个性不仅是个体间行为差异的基础,而且随时间保持一致。对这一观点的数学表述使我们能够客观地测量小鼠的特征,绘制跨物种(包括人类)的行为图谱,并探索行为的生物学基础。我们的目标是在提高我们对动物和人类理解的过程中,实现将原始运动数据“机器翻译”为可理解的人类概念。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b3d/7961179/98f2561e179b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验