Institute of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstraße 3A, 30167, Hannover, Germany.
Laboratory for Nano and Quantum Engineering, Leibniz Universität Hannover, Schneiderberg 39, 30167, Hannover, Germany.
Small. 2021 May;17(18):e2007908. doi: 10.1002/smll.202007908. Epub 2021 Mar 21.
Additive-free cryoaerogel coatings from noble metal nanoparticles are prepared and electrochemically investigated. By using liquid nitrogen or isopentane as cooling medium, two different superstructures are created for each type of noble metal nanoparticle. These materials (made from the same amount of particles) have superior morphological and catalytic properties as compared to simply immobilized, densely packed nanoparticles. The morphology of all materials is investigated with scanning electron microscopy (SEM). Electrochemically active surface areas (ECSAs) are calculated from cyclic voltammetry measurements. The catalytic activity is studied for the ethanol oxidation reaction (EOR). Both are found to be increased for superstructured materials prepared by cryoaerogelation. Furthermore, cryoaerogels with cellular to dendritic structure that arise from freezing with isopentane show the best catalytic performance and highest ECSA. Moreover, as a new class of materials, cryohydrogels are created for the first time by thawing flash-frozen nanoparticle solutions. Structure and morphology of these materials match with the corresponding types of cryoaerogels and are confirmed via SEM. Even the catalytic activity in EOR is in accordance with the results from cryoaerogel coatings. As a proof of concept, this approach offers a novel platform towards the easier and faster production of cryogelated materials for wet-chemical applications.
无添加剂的贵金属纳米颗粒冷冻气凝胶涂层的制备及电化学研究。通过使用液氮或异戊烷作为冷却介质,为每种类型的贵金属纳米颗粒都创造了两种不同的超结构。与简单固定的、密集堆积的纳米颗粒相比,这些(由相同数量的颗粒制成的)材料具有优越的形态和催化性能。所有材料的形态都通过扫描电子显微镜(SEM)进行了研究。通过循环伏安法测量计算电化学有效表面积(ECSA)。研究了它们在乙醇氧化反应(EOR)中的催化活性。结果表明,冷冻气凝胶化制备的超结构材料的这两个方面都得到了提高。此外,由异戊烷冷冻产生的具有细胞状到树枝状结构的冷冻气凝胶表现出最佳的催化性能和最高的 ECSA。此外,作为一类新型材料,首次通过解冻冷冻的纳米颗粒溶液来制备冷冻水凝胶。通过 SEM 证实了这些材料的结构和形态与相应类型的冷冻气凝胶相匹配。即使在 EOR 中的催化活性也与冷冻气凝胶涂层的结果一致。作为概念验证,这种方法为更容易和更快地生产用于湿化学应用的冷冻凝胶化材料提供了一个新的平台。