Liu Jin-Guo, Wang Lei, Zhang Pan
Beijing National Lab for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Harvard University, Cambridge, Massachusetts 02138, USA.
Phys Rev Lett. 2021 Mar 5;126(9):090506. doi: 10.1103/PhysRevLett.126.090506.
We present a unified exact tensor network approach to compute the ground state energy, identify the optimal configuration, and count the number of solutions for spin glasses. The method is based on tensor networks with the tropical algebra defined on the semiring of (R∪{-∞},⊕,⊙). Contracting the tropical tensor network gives the ground state energy; differentiating through the tensor network contraction gives the ground state configuration; mixing the tropical algebra and the ordinary algebra counts the ground state degeneracy. The approach brings together the concepts from graphical models, tensor networks, differentiable programming, and quantum circuit simulation, and easily utilizes the computational power of graphical processing units (GPUs). For applications, we compute the exact ground state energy of Ising spin glasses on square lattice up to 1024 spins, on cubic lattice up to 216 spins, and on three regular random graphs up to 220 spins, on a single GPU; we obtain exact ground state energy of ±J Ising spin glass on the chimera graph of D-Wave quantum annealer of 512 qubits in less than 100 s and investigate the exact value of the residual entropy of ±J spin glasses on the chimera graph; finally, we investigate ground-state energy and entropy of three-state Potts glasses on square lattices up to size 18×18. Our approach provides baselines and benchmarks for exact algorithms for spin glasses and combinatorial optimization problems, and for evaluating heuristic algorithms and mean-field theories.
我们提出了一种统一的精确张量网络方法,用于计算自旋玻璃的基态能量、确定最优构型以及计算解的数量。该方法基于张量网络,其热带代数定义在半环(R∪{-∞},⊕,⊙)上。收缩热带张量网络可得到基态能量;通过张量网络收缩进行微分可得到基态构型;混合热带代数和普通代数可计算基态简并度。该方法融合了图形模型、张量网络、可微编程和量子电路模拟的概念,并能轻松利用图形处理单元(GPU)的计算能力。在应用方面,我们在单个GPU上计算了方形晶格上多达1024个自旋、立方晶格上多达216个自旋以及三个正则随机图上多达220个自旋的伊辛自旋玻璃的精确基态能量;在不到100秒的时间内获得了D-Wave量子退火器512量子比特的嵌合体图上±J伊辛自旋玻璃的精确基态能量,并研究了嵌合体图上±J自旋玻璃的残余熵的精确值;最后,我们研究了大小为18×18的方形晶格上三态Potts玻璃的基态能量和熵。我们的方法为自旋玻璃和组合优化问题的精确算法以及评估启发式算法和平均场理论提供了基线和基准。