Suppr超能文献

虚构性的操作资源理论

Operational Resource Theory of Imaginarity.

作者信息

Wu Kang-Da, Kondra Tulja Varun, Rana Swapan, Scandolo Carlo Maria, Xiang Guo-Yong, Li Chuan-Feng, Guo Guang-Can, Streltsov Alexander

机构信息

CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China.

CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

出版信息

Phys Rev Lett. 2021 Mar 5;126(9):090401. doi: 10.1103/PhysRevLett.126.090401.

Abstract

Wave-particle duality is one of the basic features of quantum mechanics, giving rise to the use of complex numbers in describing states of quantum systems and their dynamics and interaction. Since the inception of quantum theory, it has been debated whether complex numbers are essential or whether an alternative consistent formulation is possible using real numbers only. Here, we attack this long-standing problem theoretically and experimentally, using the powerful tools of quantum resource theories. We show that, under reasonable assumptions, quantum states are easier to create and manipulate if they only have real elements. This gives an operational meaning to the resource theory of imaginarity. We identify and answer several important questions, which include the state-conversion problem for all qubit states and all pure states of any dimension and the approximate imaginarity distillation for all quantum states. As an application, we show that imaginarity plays a crucial role in state discrimination, that is, there exist real quantum states that can be perfectly distinguished via local operations and classical communication but that cannot be distinguished with any nonzero probability if one of the parties has no access to imaginarity. We confirm this phenomenon experimentally with linear optics, discriminating different two-photon quantum states by local projective measurements. Our results prove that complex numbers are an indispensable part of quantum mechanics.

摘要

波粒二象性是量子力学的基本特征之一,这使得复数在描述量子系统的状态及其动力学和相互作用中得以应用。自量子理论诞生以来,复数是否必不可少,或者是否仅使用实数就能构建出另一种一致的理论表述,一直存在争议。在此,我们利用量子资源理论的强大工具,从理论和实验两方面攻克这个长期存在的问题。我们表明,在合理假设下,如果量子态仅具有实元素,那么创建和操纵它们会更容易。这为虚数资源理论赋予了操作意义。我们识别并回答了几个重要问题,包括所有量子比特态以及任意维度的所有纯态的态转换问题,以及所有量子态的近似虚数提纯问题。作为一个应用,我们表明虚数在态区分中起着关键作用,即存在一些实量子态,它们可以通过局域操作和经典通信被完美区分,但如果其中一方无法使用虚数,则无法以任何非零概率被区分。我们通过线性光学实验证实了这一现象,通过局域投影测量来区分不同的双光子量子态。我们的结果证明复数是量子力学不可或缺的一部分。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验