Klaes Benjamin, Lardé Rodrigue, Delaroche Fabien, Hatzoglou Constantinos, Parvianien Stefan, Houard Jonathan, Da Costa Gérald, Normand Antoine, Brault Martin, Radiguet Bertrand, Vurpillot François
Normandie Université, UNIROUEN, INSA Rouen, CNRS, Groupe de Physique des Matériaux, Rouen76000, France.
Microsc Microanal. 2021 Apr;27(2):365-384. doi: 10.1017/S1431927621000131.
This article presents a fast and highly efficient algorithm developed to reconstruct a three-dimensional (3D) volume with a high spatial precision from a set of field ion microscopy (FIM) images, and specific tools developed to characterize crystallographic lattice and defects. A set of FIM digital images and image processing algorithms allow the construction of a 3D reconstruction of the sample at the atomic scale. The capability of the 3D FIM to resolve the crystallographic lattice and the finest defects in metals opens a new way to analyze materials. This spatial precision was quantified on tungsten, analyzed at different analyzing conditions. A specific data mining tool, based on Fourier transforms, was also developed to characterize lattice distortions in the reconstructed volumes. This tool has been used in simulated and experimental volumes to successfully locate and characterize defects such as dislocations and grain boundaries.
本文介绍了一种快速高效的算法,该算法用于从一组场离子显微镜(FIM)图像中以高空间精度重建三维(3D)体积,以及为表征晶体晶格和缺陷而开发的特定工具。一组FIM数字图像和图像处理算法能够在原子尺度上构建样品的3D重建。3D FIM解析金属晶体晶格和最细微缺陷的能力为材料分析开辟了一条新途径。在不同分析条件下对钨进行分析,从而对这种空间精度进行了量化。还开发了一种基于傅里叶变换的特定数据挖掘工具,以表征重建体积中的晶格畸变。该工具已用于模拟和实验体积中,以成功定位和表征诸如位错和晶界等缺陷。