Suppr超能文献

恶意攻击下多智能体系统的弹性共识:基于指定时间观测器的方法

Resilient Consensus of Multiagent Systems Under Malicious Attacks: Appointed-Time Observer-Based Approach.

作者信息

Zhou Jialing, Lv Yuezu, Wen Guanghui, Yu Xinghuo

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):10187-10199. doi: 10.1109/TCYB.2021.3058094. Epub 2022 Sep 19.

Abstract

This article aims to establish an appointed-time observer-based framework to efficiently address the resilient consensus control problem of linear multiagent systems with malicious attacks. The local appointed-time state observer is skillfully designed for each agent to estimate the agent's actual state value at the appointed time, even in the presence of unknown malicious attacks. Based on the state estimation, a new kind of resilient control strategy is proposed, where a virtual system is constructed for each agent to generate an ideal state value such that the consensus of normal agents can be achieved with the exchange of ideal state values among neighboring agents. To specify the consensus trajectory while achieving resilient consensus, the leader-follower resilient consensus is further studied, where the leader is assumed to be a trusted agent with a bounded control input. Compared with the existing results on the resilient consensus, the proposed distributed resilient controller design reduces the requirement on communication connectivity significantly, where the allowable communication graph is only assumed to contain a directed spanning tree. To verify the theoretical analysis, numerical simulations are finally provided.

摘要

本文旨在建立一个基于指定时间观测器的框架,以有效解决具有恶意攻击的线性多智能体系统的弹性一致性控制问题。为每个智能体巧妙地设计了局部指定时间状态观测器,以便在存在未知恶意攻击的情况下,在指定时间估计智能体的实际状态值。基于状态估计,提出了一种新型的弹性控制策略,为每个智能体构建一个虚拟系统以生成理想状态值,使得正常智能体通过相邻智能体之间理想状态值的交换实现一致性。为了在实现弹性一致性的同时指定一致性轨迹,进一步研究了领导者-跟随者弹性一致性,其中假设领导者是具有有界控制输入的可信智能体。与现有关于弹性一致性的结果相比,所提出的分布式弹性控制器设计显著降低了对通信连通性的要求,其中仅假设允许的通信图包含一个有向生成树。为了验证理论分析,最后提供了数值模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验