Li Genghui, Zhang Qingfu, Lin Qiuzhen, Gao Weifeng
IEEE Trans Cybern. 2022 Jul;52(7):5720-5731. doi: 10.1109/TCYB.2021.3061420. Epub 2022 Jul 4.
This article proposes a three-level radial basis function (TLRBF)-assisted optimization algorithm for expensive optimization. It consists of three search procedures at each iteration: 1) the global exploration search is to find a solution by optimizing a global RBF approximation function subject to a distance constraint in the whole search space; 2) the subregion search is to generate a solution by minimizing an RBF approximation function in a subregion determined by fuzzy clustering; and 3) the local exploitation search is to generate a solution by solving a local RBF approximation model in the neighborhood of the current best solution. Compared with some other state-of-the-art algorithms on five commonly used scalable benchmark problems, ten CEC2015 computationally expensive problems, and a real-world airfoil design optimization problem, our proposed algorithm performs well for expensive optimization.
本文提出了一种用于昂贵优化问题的三级径向基函数(TLRBF)辅助优化算法。每次迭代它由三个搜索过程组成:1)全局探索搜索是通过在整个搜索空间中受距离约束的情况下优化全局径向基函数近似函数来找到一个解;2)子区域搜索是通过在由模糊聚类确定的子区域中最小化径向基函数近似函数来生成一个解;3)局部开发搜索是通过求解当前最优解邻域内的局部径向基函数近似模型来生成一个解。与其他一些最先进的算法在五个常用的可扩展基准问题、十个CEC2015计算昂贵问题以及一个实际翼型设计优化问题上进行比较,我们提出的算法在昂贵优化方面表现良好。