Department of Molecular Biology and Biotechnology, Institute of Cell Biology, NAS of Ukraine, Lviv, Ukraine.
Department of Microbiology and Biotechnology, University of Rzeszow, Rzeszow, Poland.
Methods Mol Biol. 2021;2280:15-30. doi: 10.1007/978-1-0716-1286-6_2.
The approaches used by the authors to design the Candida famata strains capable to overproduce riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) are described. The metabolic engineering approaches include overexpression of SEF1 gene encoding positive regulator of riboflavin biosynthesis, IMH3 (coding for IMP dehydrogenase) orthologs from another species of flavinogenic yeast Debaryomyces hansenii, and the homologous genes RIB1 and RIB7 encoding GTP cyclohydrolase II and riboflavin synthase, the first and the last enzymes of riboflavin biosynthesis pathway, respectively. Overexpression of the above mentioned genes in the genetically stable riboflavin overproducer AF-4 obtained by classical selection resulted in fourfold increase of riboflavin production in shake flask experiments.Overexpression of engineered enzymes phosphoribosyl pyrophosphate synthetase and phosphoribosyl pyrophosphate amidotransferase catalyzing the initial steps of purine nucleotide biosynthesis enhances riboflavin synthesis in the flavinogenic yeast C. famata even more.Recombinant strains of C. famata containing FMN1 gene from D. hansenii encoding riboflavin kinase under control of the strong constitutive TEF1 promoter were constructed. Overexpression of the FMN1 gene in the riboflavin-producing mutant led to the 30-fold increase of the riboflavin kinase activity and 400-fold increase of FMN production in the resulting recombinant strains which reached maximally 318.2 mg/L.FAD overproducing strains of C. famata were also constructed. This was achieved by overexpression of FAD1 gene from D. hansenii in C. famata FMN overproducing strain. The 7- to 15-fold increase in FAD synthetase activity as compared to the wild-type strain and FAD accumulation into cultural medium were observed. The maximal FAD titer 451.5 mg/L was achieved.
本文描述了作者设计能够过量生产核黄素、黄素单核苷酸 (FMN) 和黄素腺嘌呤二核苷酸 (FAD) 的产朊假丝酵母菌株的方法。代谢工程方法包括过表达编码核黄素生物合成正调控因子 SEF1 的基因、来自另一种产黄素酵母德巴利酵母 Hansenula 的 IMP 脱氢酶 (IMH3) 同源物,以及编码 GTP 环化水解酶 II 和核黄素合酶的同源基因 RIB1 和 RIB7,分别为核黄素生物合成途径的第一和最后一个酶。在通过经典选择获得的遗传稳定核黄素高产菌株 AF-4 中过表达上述基因,导致摇瓶实验中核黄素产量增加了 4 倍。嘌呤核苷酸生物合成初始步骤的工程酶磷酸核糖焦磷酸合酶和磷酸核糖焦磷酸酰胺转移酶的过表达进一步增强了产黄素假丝酵母 C. famata 中的核黄素合成。构建了含有来自德巴利酵母 Hansenula 的 FMN1 基因的重组产朊假丝酵母菌株,该基因编码在强组成型 TEF1 启动子控制下的核黄素激酶。在核黄素产生突变体中过表达 FMN1 基因导致核黄素激酶活性增加 30 倍,FMN 产量增加 400 倍,在所得重组菌株中达到最大值 318.2 mg/L。还构建了产 FAD 的产朊假丝酵母菌株。这是通过在产 FMN 的产朊假丝酵母菌株中过表达来自德巴利酵母 Hansenula 的 FAD1 基因来实现的。与野生型菌株相比,FAD 合酶活性增加了 7-15 倍,并且 FAD 积累到培养基中。达到了 451.5 mg/L 的最大 FAD 浓度。