Suppr超能文献

模板导向快速合成用于高效氧还原的钯基超薄多孔金属间化合物纳米片

Template-Directed Rapid Synthesis of Pd-Based Ultrathin Porous Intermetallic Nanosheets for Efficient Oxygen Reduction.

作者信息

Guo Jingchun, Gao Lei, Tan Xin, Yuan Yuliang, Kim Jeonghyeon, Wang Yu, Wang Hui, Zeng Yu-Jia, Choi Sang-Il, Smith Sean C, Huang Hongwen

机构信息

College of Materials Science and Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan, 410082, China.

College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.

出版信息

Angew Chem Int Ed Engl. 2021 May 3;60(19):10942-10949. doi: 10.1002/anie.202100307. Epub 2021 Apr 7.

Abstract

Atomically ordered intermetallic nanoparticles exhibit improved catalytic activity and durability relative to random alloy counterparts. However, conventional methods with time-consuming and high-temperature syntheses only have rudimentary capability in controlling the structure of intermetallic nanoparticles, hindering advances of intermetallic nanocatalysts. We report a template-directed strategy for rapid synthesis of Pd-based (PdM, M=Pb, Sn and Cd) ultrathin porous intermetallic nanosheets (UPINs) with tunable sizes. This strategy uses preformed seeds, which act as the template to control the deposition of foreign atoms and the subsequent interatomic diffusion. Using the oxygen reduction reaction (ORR) as a model reaction, the as-synthesized Pd Pb UPINs exhibit superior activity, durability, and methanol tolerance. The favored geometrical structure and interatomic interaction between Pd and Pb in Pd Pb UPINs are concluded to account for the enhanced ORR performance.

摘要

与无序合金纳米颗粒相比,原子有序的金属间化合物纳米颗粒表现出更高的催化活性和耐久性。然而,传统的耗时高温合成方法在控制金属间化合物纳米颗粒结构方面能力有限,阻碍了金属间化合物纳米催化剂的发展。我们报道了一种模板导向策略,用于快速合成尺寸可调的钯基(PdM,M = Pb、Sn和Cd)超薄多孔金属间化合物纳米片(UPINs)。该策略使用预先形成的晶种作为模板,控制外来原子的沉积以及随后的原子间扩散。以氧还原反应(ORR)作为模型反应,合成的Pd-Pb UPINs表现出优异的活性、耐久性和甲醇耐受性。得出结论,Pd-Pb UPINs中Pd和Pb之间有利的几何结构和原子间相互作用是ORR性能增强的原因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验