Suppr超能文献

用于高效电催化的金属间化合物纳米结构

Intermetallic Nanoarchitectures for Efficient Electrocatalysis.

作者信息

Kim Ho Young, Jun Minki, Joo Sang Hoon, Lee Kwangyeol

机构信息

Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 14-gil 5 Hwarang-ro, Seongbuk-gu, Seoul 02792, Republic of Korea.

Department of Chemistry and Research Institute for Natural Science, Korea University, Seoul 02841, Republic of Korea.

出版信息

ACS Nanosci Au. 2022 Nov 2;3(1):28-36. doi: 10.1021/acsnanoscienceau.2c00045. eCollection 2023 Feb 15.

Abstract

Intermetallic structures whose regular atomic arrays of constituent elements present unique catalytic properties have attracted considerable attention as efficient electrocatalysts for energy conversion reactions. Further performance enhancement in intermetallic catalysts hinges on constructing catalytic surfaces possessing high activity, durability, and selectivity. In this Perspective, we introduce recent endeavors to boost the performance of intermetallic catalysts by generating nanoarchitectures, which have well-defined size, shape, and dimension. We discuss the beneficial effects of nanoarchitectures compared with simple nanoparticles in catalysis. We highlight that the nanoarchitectures have high intrinsic activity owing to their inherent structural factors, including controlled facets, surface defects, strained surfaces, nanoscale confinement effects, and a high density of active sites. We next present notable examples of intermetallic nanoarchitectures, namely, facet-controlled intermetallic nanocrystals and multidimensional nanomaterials. Finally, we suggest the future research directions of intermetallic nanoarchitectures.

摘要

其组成元素的规则原子阵列具有独特催化性能的金属间化合物结构,作为能量转换反应的高效电催化剂已引起了广泛关注。金属间化合物催化剂性能的进一步提升取决于构建具有高活性、耐久性和选择性的催化表面。在这篇展望文章中,我们介绍了通过生成具有明确尺寸、形状和维度的纳米结构来提高金属间化合物催化剂性能的近期研究工作。我们讨论了纳米结构在催化中相对于简单纳米颗粒的有益效果。我们强调,由于其固有的结构因素,包括可控的晶面、表面缺陷、应变表面、纳米尺度限制效应和高密度的活性位点,纳米结构具有高本征活性。接下来,我们展示金属间化合物纳米结构的显著实例,即晶面控制的金属间化合物纳米晶体和多维纳米材料。最后,我们提出了金属间化合物纳米结构的未来研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbc4/10125321/eb0cb286fe20/ng2c00045_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验