Suppr超能文献

通过用于溶解甲烷捕获的聚二甲基硅氧烷(PDMS)膜扩大厌氧膜生物反应器(AnMBR)在城市污水处理中的适用性:温度和流体动力学的影响

Widening the applicability of AnMBR for urban wastewater treatment through PDMS membranes for dissolved methane capture: Effect of temperature and hydrodynamics.

作者信息

Sanchis-Perucho Pau, Robles Ángel, Durán Freddy, Rogalla Frank, Ferrer José, Seco Aurora

机构信息

CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Spain.

FCC Aqualia, S.A., Spain.

出版信息

J Environ Manage. 2021 Jun 1;287:112344. doi: 10.1016/j.jenvman.2021.112344. Epub 2021 Mar 19.

Abstract

AnMBR technology is a promising alternative to achieve future energy-efficiency and environmental-friendly urban wastewater (UWW) treatment. However, the large amount of dissolved methane lost in the effluent represents a potential high environmental impact that hinder the feasibility of this technology for full-scale applications. The use of degassing membranes (DM) to capture the dissolved methane from AnMBR effluents can be considered as an interesting alternative to solve this problem although further research is required to assess the suitability of this emerging technology. The aim of this study was to assess the effect of operating temperature and hydrodynamics on the capture of dissolved methane from AnMBR effluents by DMs. To this aim, a commercial polydimethylsiloxane (PDMS) DM was coupled to an industrial prototype AnMBR (demonstration scale) treating UWW at ambient temperature. Different operating temperatures have been evaluated: 11, 18, 24 and 30 °C. Moreover, the DM was operated at different ratios of liquid flow rate to membrane area (Q:A) ranging from 22 to 190 Lhm in order to study the resistance of the system to methane permeation. Methane recovery was maximized when temperature raised and Q:A was reduced, giving methane recovery efficiencies (MRE) of about 85% at a temperature of 30 °C and a Q:A of 25 Lhm. The study showed that high Q:A ratios hinder methane recovery by the perturbation of the DM fibers, being this effect intensified at lower temperatures probably due the higher liquid viscosities. Also, the performed fouling evaluation showed that not significant membrane fouling may be expected in the DM unit at the short-term when treating AnMBR effluents. A resistance-in-series model was proposed to predict the overall mass transfer of the system according to operating temperature and Q:A, showing that methane capture was controlled by the liquid phase, which represented up to 80-90% of total mass transfer resistance. The energy and environmental evaluation performed in this study revealed that PDMS DMs would enhance energy recovery and environmental feasibility of AnMBR technology for UWW treatment, especially when operating at low temperatures. When MRE was maximized, the combination of AnMBR with DM achieved net energy productions and net greenhouse gas reductions of up to 0.87 kWh and 0.216 kg CO-eq per m of treated water.

摘要

厌氧膜生物反应器(AnMBR)技术是实现未来能源高效和环境友好型城市污水处理的一种有前景的替代方案。然而,出水中大量溶解甲烷的损失代表了潜在的高环境影响,这阻碍了该技术在全规模应用中的可行性。使用脱气膜(DM)从AnMBR出水中捕获溶解甲烷可被视为解决这一问题的一个有趣替代方案,尽管需要进一步研究来评估这种新兴技术的适用性。本研究的目的是评估操作温度和流体动力学对DM从AnMBR出水中捕获溶解甲烷的影响。为此,将一种商用聚二甲基硅氧烷(PDMS)DM与一个在环境温度下处理城市污水的工业原型AnMBR(示范规模)相连接。评估了不同的操作温度:11、18、24和30°C。此外,DM在液体流速与膜面积的不同比率(Q:A)下运行,范围从22至190Lhm,以研究系统对甲烷渗透的阻力。当温度升高且Q:A降低时,甲烷回收率最大化,在30°C的温度和25Lhm的Q:A下,甲烷回收效率(MRE)约为85%。研究表明,高Q:A比率会因DM纤维的扰动而阻碍甲烷回收,这种影响在较低温度下可能会加剧,这可能是由于液体粘度较高。此外,进行的污垢评估表明,在处理AnMBR出水时,短期内DM单元预计不会出现明显的膜污染。提出了一个串联阻力模型,以根据操作温度和Q:A预测系统的整体传质,结果表明甲烷捕获受液相控制,液相占总传质阻力的80 - 90%。本研究进行的能量和环境评估表明,PDMS DM将提高AnMBR技术处理城市污水的能量回收和环境可行性,特别是在低温运行时。当MRE最大化时,AnMBR与DM的组合每立方米处理水可实现高达0.87kWh的净能量产生和0.216kg CO2-eq的净温室气体减排。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验