Suppr超能文献

肺表面活性剂的结构特征:脂质-蛋白相互作用、膜结构和未来的挑战。

Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges.

机构信息

Department of Biochemistry and Molecular Biology, Faculty of Biology and Research Institute "Hospital 12 Octubre (imas12)", Complutense University, Madrid, Spain.

出版信息

Arch Biochem Biophys. 2021 May 30;703:108850. doi: 10.1016/j.abb.2021.108850. Epub 2021 Mar 20.

Abstract

Lung surfactant (LS) is an outstanding example of how a highly regulated and dynamic membrane-based system has evolved to sustain a wealth of structural reorganizations in order to accomplish its biophysical function, as it coats and stabilizes the respiratory air-liquid interface in the mammalian lung. The present review dissects the complexity of the structure-function relationships in LS through an updated description of the lipid-protein interactions and the membrane structures that sustain its synthesis, secretion, interfacial performance and recycling. We also revise the current models and the biophysical techniques employed to study the membranous architecture of LS. It is important to consider that the structure and functional properties of LS are often studied in bulk or under static conditions, in spite that surfactant function is strongly connected with a highly dynamic behaviour, sustained by very polymorphic structures and lipid-lipid, lipid-protein and protein-protein interactions that reorganize in precise spatio-temporal coordinates. We have tried to underline the evidences available of the existence of such structural dynamism in LS. A last important aspect is that the synthesis and assembly of LS is a strongly regulated intracellular process to ensure the establishment of the proper interactions driving LS surface activity, while protecting the integrity of other cell membranes. The use of simplified lipid models or partial natural materials purified from animal tissues could be too simplistic to understand the true molecular mechanisms defining surfactant function in vivo. In this line, we will bring into the attention of the reader the methodological challenges and the questions still open to understand the structure-function relationships of LS at its full biological relevance.

摘要

肺表面活性剂(LS)是一个极好的例子,说明了一个高度调节和动态的基于膜的系统是如何进化的,以维持大量的结构重组,从而完成其生物物理功能,因为它覆盖并稳定了哺乳动物肺中的呼吸气液界面。本综述通过更新描述脂质-蛋白相互作用和维持其合成、分泌、界面性能和再循环的膜结构,剖析了 LS 结构-功能关系的复杂性。我们还修正了目前用于研究 LS 膜状结构的模型和生物物理技术。重要的是要考虑到,尽管表面活性剂的功能与高度动态的行为密切相关,但其结构和功能特性通常在批量或静态条件下进行研究,这是由非常多态的结构以及脂质-脂质、脂质-蛋白和蛋白-蛋白相互作用维持的,这些相互作用在精确的时空坐标中重新排列。我们试图强调 LS 中存在这种结构动态性的现有证据。最后一个重要的方面是,LS 的合成和组装是一个强烈调节的细胞内过程,以确保建立适当的相互作用,从而驱动 LS 的表面活性,同时保护其他细胞膜的完整性。使用简化的脂质模型或从动物组织中纯化的部分天然材料可能过于简单,无法理解体内表面活性剂功能的真正分子机制。在这方面,我们将提请读者注意在充分了解 LS 的生物学相关性时,方法学上的挑战和仍然存在的问题。

相似文献

1
Structural hallmarks of lung surfactant: Lipid-protein interactions, membrane structure and future challenges.
Arch Biochem Biophys. 2021 May 30;703:108850. doi: 10.1016/j.abb.2021.108850. Epub 2021 Mar 20.
2
Structure of pulmonary surfactant membranes and films: the role of proteins and lipid-protein interactions.
Biochim Biophys Acta. 2008 Jul-Aug;1778(7-8):1676-95. doi: 10.1016/j.bbamem.2008.05.003. Epub 2008 May 11.
3
Structure-function relationships in pulmonary surfactant membranes: from biophysics to therapy.
Biochim Biophys Acta. 2014 Jun;1838(6):1568-85. doi: 10.1016/j.bbamem.2014.01.028. Epub 2014 Feb 11.
4
Compositional, structural and functional properties of discrete coexisting complexes within bronchoalveolar pulmonary surfactant.
Biochim Biophys Acta Biomembr. 2022 Feb 1;1864(1):183808. doi: 10.1016/j.bbamem.2021.183808. Epub 2021 Oct 20.
5
Palmitoylation as a key factor to modulate SP-C-lipid interactions in lung surfactant membrane multilayers.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):184-91. doi: 10.1016/j.bbamem.2014.10.009. Epub 2014 Oct 12.
6
Lipid-protein interactions of hydrophobic proteins SP-B and SP-C in lung surfactant assembly and dynamics.
Pediatr Pathol Mol Med. 2001 Nov-Dec;20(6):445-69. doi: 10.1080/pdp.20.6.445.469.
7
Protein-lipid interactions and surface activity in the pulmonary surfactant system.
Chem Phys Lipids. 2006 Jun;141(1-2):105-18. doi: 10.1016/j.chemphyslip.2006.02.017. Epub 2006 Mar 20.
8
Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films.
Chem Phys Lipids. 2015 Jan;185:153-75. doi: 10.1016/j.chemphyslip.2014.09.002. Epub 2014 Sep 28.
9
Understanding the principle biophysics concepts of pulmonary surfactant in health and disease.
Arch Dis Child Fetal Neonatal Ed. 2019 Jul;104(4):F443-F451. doi: 10.1136/archdischild-2018-315413. Epub 2018 Dec 14.
10
Computer simulations of lung surfactant.
Biochim Biophys Acta. 2016 Oct;1858(10):2431-2440. doi: 10.1016/j.bbamem.2016.02.030. Epub 2016 Feb 27.

引用本文的文献

2
Molecular Insights into Interactions between Ofloxacin and Ionic Micelles.
J Membr Biol. 2025 Jul 22. doi: 10.1007/s00232-025-00357-0.
4
Bacillus subtilis spore surface display enhances manganese peroxidase stability and stress resistance.
Bioresour Bioprocess. 2025 Jun 10;12(1):57. doi: 10.1186/s40643-025-00901-9.
5
Surfactant protein SP-B: one ring to rule the molecular and biophysical mechanisms of the pulmonary surfactant system.
Biophys Rev. 2025 Mar 18;17(2):653-666. doi: 10.1007/s12551-025-01285-y. eCollection 2025 Apr.
6
Bacterial expression, purification and folding of exceptionally hydrophobic and essential protein: Surfactant Protein-B (SP-B).
PLoS One. 2025 Apr 25;20(4):e0321446. doi: 10.1371/journal.pone.0321446. eCollection 2025.
10
Exposure to Aldehyde Cherry e-Liquid Flavoring and Its Vaping Byproduct Disrupt Pulmonary Surfactant Biophysical Function.
Environ Sci Technol. 2024 Jan 23;58(3):1495-1508. doi: 10.1021/acs.est.3c07874. Epub 2024 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验