Suppr超能文献

过氧化物酶体增殖物激活受体 γ 标记多个非淋巴组织 Treg 区室的脾前体细胞。

PPARγ marks splenic precursors of multiple nonlymphoid-tissue Treg compartments.

机构信息

Department of Immunology, Harvard Medical School, Boston, MA 02115.

Department of Immunology, Harvard Medical School, Boston, MA 02115

出版信息

Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2025197118.

Abstract

Foxp3CD4 regulatory T cells (Tregs) regulate most types of immune response as well as several processes important for tissue homeostasis, for example, metabolism and repair. Dedicated Treg compartments-with distinct transcriptomes, T cell receptor repertoires, and growth/survival factor dependencies-have been identified in several nonlymphoid tissues. These Tregs are specifically adapted to function and operate in their home tissue-When, where, and how do they take on their specialized characteristics? We recently reported that a splenic Treg population expressing low levels of the transcription factor PPARγ (peroxisome proliferator-activated receptor gamma) contains precursors of Tregs residing in visceral adipose tissue. This finding made sense given that PPARγ, the "master regulator" of adipocyte differentiation, is required for the accumulation and function of Tregs in visceral adipose tissue but not in lymphoid tissues. Here we use single-cell RNA sequencing, single-cell and sequencing, and adoptive-transfer experiments to show that, unexpectedly, the splenic PPARγ Treg population is transcriptionally heterogeneous and engenders Tregs in multiple nonlymphoid tissues beyond visceral adipose tissue, such as skin and liver. The existence of a general pool of splenic precursors for nonlymphoid-tissue Tregs opens possibilities for regulating their emergence experimentally or therapeutically.

摘要

叉头框蛋白 P3+CD4+ 调节性 T 细胞(Tregs)调节大多数类型的免疫反应以及对组织稳态很重要的几个过程,例如代谢和修复。在几种非淋巴组织中已经鉴定出具有独特转录组、T 细胞受体库和生长/存活因子依赖性的专用 Treg 区室。这些 Tregs 专门适应于在其组织内发挥功能——它们何时、何地以及如何获得其特化特征?我们最近报道,脾脏中表达低水平转录因子 PPARγ(过氧化物酶体增殖物激活受体γ)的 Treg 群体包含驻留在内脏脂肪组织中的 Treg 的前体。鉴于脂肪细胞分化的“主调控因子” PPARγ 对于 Tregs 在内脏脂肪组织中的积累和功能是必需的,但对于淋巴组织不是必需的,因此这一发现是有意义的。在这里,我们使用单细胞 RNA 测序、单细胞和谱系追踪实验表明,出乎意料的是,脾脏中的 PPARγ+Treg 群体在转录上是异质的,并在除内脏脂肪组织以外的多个非淋巴组织中诱导 Tregs,如皮肤和肝脏。存在用于非淋巴组织 Tregs 的通用脾脏前体库为实验或治疗性地调节它们的出现提供了可能性。

相似文献

1
PPARγ marks splenic precursors of multiple nonlymphoid-tissue Treg compartments.
Proc Natl Acad Sci U S A. 2021 Mar 30;118(13). doi: 10.1073/pnas.2025197118.
2
TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype.
Cell. 2018 Jul 12;174(2):285-299.e12. doi: 10.1016/j.cell.2018.05.004. Epub 2018 Jun 7.
3
Molecular diversification of regulatory T cells in nonlymphoid tissues.
Sci Immunol. 2018 Sep 14;3(27). doi: 10.1126/sciimmunol.aat5861.
4
Appearance and disappearance of the mRNA signature characteristic of Treg cells in visceral adipose tissue: age, diet, and PPARγ effects.
Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):482-7. doi: 10.1073/pnas.1423486112. Epub 2014 Dec 30.
5
Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF.
Immunity. 2020 Feb 18;52(2):295-312.e11. doi: 10.1016/j.immuni.2019.12.002. Epub 2020 Jan 7.
6
Tissue regulatory T cells: regulatory chameleons.
Nat Rev Immunol. 2021 Sep;21(9):597-611. doi: 10.1038/s41577-021-00519-w. Epub 2021 Mar 26.
7
Adoptive Cell Transfer of Regulatory T Cells Exacerbates Hepatic Steatosis in High-Fat High-Fructose Diet-Fed Mice.
Front Immunol. 2020 Jul 31;11:1711. doi: 10.3389/fimmu.2020.01711. eCollection 2020.
8
Derivation and Differentiation of Adipose-Tissue Regulatory T Cells: A Stepwise, Multi-Site Process.
Front Immunol. 2020 Oct 29;11:599277. doi: 10.3389/fimmu.2020.599277. eCollection 2020.
9
A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection From Myocardial Infarction.
Circulation. 2020 Nov 17;142(20):1956-1973. doi: 10.1161/CIRCULATIONAHA.120.046789. Epub 2020 Sep 28.
10
Enzymatic Activity of HPGD in Treg Cells Suppresses Tconv Cells to Maintain Adipose Tissue Homeostasis and Prevent Metabolic Dysfunction.
Immunity. 2019 May 21;50(5):1232-1248.e14. doi: 10.1016/j.immuni.2019.03.014. Epub 2019 Apr 23.

引用本文的文献

2
Immunometabolism of regulatory T cells in cancer.
Oncogene. 2025 Jul;44(25):2011-2024. doi: 10.1038/s41388-025-03458-1. Epub 2025 Jun 4.
3
Vps34-orchestrated lipid signaling processes regulate the transitional heterogeneity and functional adaptation of effector regulatory T cells.
PLoS Biol. 2025 Apr 11;23(4):e3003074. doi: 10.1371/journal.pbio.3003074. eCollection 2025 Apr.
4
5
enhances the immunosuppressive milieu of adipose tissue and suppresses fasting blood glucose.
Biomed Rep. 2024 Sep 3;21(5):164. doi: 10.3892/br.2024.1852. eCollection 2024 Nov.
6
An integrated transcription factor framework for Treg identity and diversity.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2411301121. doi: 10.1073/pnas.2411301121. Epub 2024 Aug 28.
7
Many Faces of Regulatory T Cells: Heterogeneity or Plasticity?
Cells. 2024 Jun 1;13(11):959. doi: 10.3390/cells13110959.
8
Deciphering visceral adipose tissue regulatory T cells: Key contributors to metabolic health.
Immunol Rev. 2024 Jul;324(1):52-67. doi: 10.1111/imr.13336. Epub 2024 Apr 26.
10
Deciphering the developmental trajectory of tissue-resident Foxp3 regulatory T cells.
Front Immunol. 2024 Mar 28;15:1331846. doi: 10.3389/fimmu.2024.1331846. eCollection 2024.

本文引用的文献

1
Proenkephalin regulatory T cells expanded by ultraviolet B exposure maintain skin homeostasis with a healing function.
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20696-20705. doi: 10.1073/pnas.2000372117. Epub 2020 Aug 7.
2
Generalizing RNA velocity to transient cell states through dynamical modeling.
Nat Biotechnol. 2020 Dec;38(12):1408-1414. doi: 10.1038/s41587-020-0591-3. Epub 2020 Aug 3.
3
Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF.
Immunity. 2020 Feb 18;52(2):295-312.e11. doi: 10.1016/j.immuni.2019.12.002. Epub 2020 Jan 7.
5
Current best practices in single-cell RNA-seq analysis: a tutorial.
Mol Syst Biol. 2019 Jun 19;15(6):e8746. doi: 10.15252/msb.20188746.
6
Single-Cell Transcriptomics of Regulatory T Cells Reveals Trajectories of Tissue Adaptation.
Immunity. 2019 Feb 19;50(2):493-504.e7. doi: 10.1016/j.immuni.2019.01.001. Epub 2019 Feb 5.
7
Cutting Edge: Dynamic Expression of Id3 Defines the Stepwise Differentiation of Tissue-Resident Regulatory T Cells.
J Immunol. 2019 Jan 1;202(1):31-36. doi: 10.4049/jimmunol.1800917. Epub 2018 Dec 5.
8
RNA velocity of single cells.
Nature. 2018 Aug;560(7719):494-498. doi: 10.1038/s41586-018-0414-6. Epub 2018 Aug 8.
9
TCR Transgenic Mice Reveal Stepwise, Multi-site Acquisition of the Distinctive Fat-Treg Phenotype.
Cell. 2018 Jul 12;174(2):285-299.e12. doi: 10.1016/j.cell.2018.05.004. Epub 2018 Jun 7.
10
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验