National Institute of Plant Genome Research, Aruna Asaf Ali Marg, P.O. Box No. 10531, New Delhi, 110067, India.
ICAR-IARI-Regional Research Center, P. B. Road, Dharwad, 580001, India.
Sci Rep. 2021 Mar 22;11(1):6568. doi: 10.1038/s41598-021-85928-6.
Rhizoctonia bataticola causes dry root rot (DRR), a devastating disease in chickpea (Cicer arietinum). DRR incidence increases under water deficit stress and high temperature. However, the roles of other edaphic and environmental factors remain unclear. Here, we performed an artificial neural network (ANN)-based prediction of DRR incidence considering DRR incidence data from previous reports and weather factors. ANN-based prediction using the backpropagation algorithm showed that the combination of total rainfall from November to January of the chickpea-growing season and average maximum temperature of the months October and November is crucial in determining DRR occurrence in chickpea fields. The prediction accuracy of DRR incidence was 84.6% with the validation dataset. Field trials at seven different locations in India with combination of low soil moisture and pathogen stress treatments confirmed the impact of low soil moisture on DRR incidence under different agroclimatic zones and helped in determining the correlation of soil factors with DRR incidence. Soil phosphorus, potassium, organic carbon, and clay content were positively correlated with DRR incidence, while soil silt content was negatively correlated. Our results establish the role of edaphic and other weather factors in chickpea DRR disease incidence. Our ANN-based model will allow the location-specific prediction of DRR incidence, enabling efficient decision-making in chickpea cultivation to minimize yield loss.
立枯丝核菌引起干根腐病(DRR),这是鹰嘴豆(Cicer arietinum)的一种毁灭性疾病。在水分亏缺胁迫和高温下,DRR 的发病率会增加。然而,其他土壤和环境因素的作用仍不清楚。在这里,我们考虑了先前报告的 DRR 发病率数据和气象因素,使用人工神经网络(ANN)进行了 DRR 发病率的预测。使用反向传播算法的基于 ANN 的预测表明,在鹰嘴豆生长季节的 11 月至 1 月的总降雨量和 10 月和 11 月的平均最高温度的组合是确定鹰嘴豆田中 DRR 发生的关键因素。该预测模型在验证数据集中的 DRR 发病率预测准确率为 84.6%。在印度的七个不同地点进行的田间试验,结合低土壤水分和病原菌胁迫处理,证实了低土壤水分对不同农业气候区 DRR 发病率的影响,并有助于确定土壤因素与 DRR 发病率的相关性。土壤磷、钾、有机碳和粘粒含量与 DRR 发病率呈正相关,而土壤粉粒含量与 DRR 发病率呈负相关。我们的研究结果确立了土壤和其他气象因素在鹰嘴豆 DRR 病害发病率中的作用。我们的基于 ANN 的模型将允许对 DRR 发病率进行特定地点的预测,从而能够在鹰嘴豆种植中做出有效的决策,以最大程度地减少产量损失。