Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
Deutsche Saatveredelung AG, Lippstadt, Germany.
Ann Bot. 2021 Jun 24;127(7):841-852. doi: 10.1093/aob/mcab043.
Self-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding.
We review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the Lolium-Festuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species.
A better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.
自交不亲和(SI)系统可防止若干禾本科物种的自花授粉,其中许多禾本科物种在经济上是重要的饲料、生物能源和草坪草。自交不亲和可确保异花授粉和遗传多样性,但限制了固定有用遗传变异的能力。在大多数自交作物中,可以通过自花授粉来培育高表现的纯合亲本系,然后可以创造出具有更高性能的 F1 杂交品种,这种现象称为杂种优势。在异花授粉的禾本科植物中,无法充分利用杂种优势,这是与自交作物相比,其在育种计划中的改良水平较低的部分原因。然而,可以克服饲料草中的 SI,以创建自交亲和种群。这引发了人们对理解自交亲和性(SC)的遗传基础、其对生殖策略的意义以及对作物改良的利用的兴趣,特别是在 F1 杂交育种的背景下。
我们回顾了关于异花授粉草种的 SI 和 SC 的文献。我们回顾了目前用于发现和表征新型 SC 来源的基因组工具和方法。我们讨论了 SC 为异花授粉草种带来的几乎未被探索的机会。具体来说,我们讨论了在 Lolium-Festuca 复合体背景下广泛引入 SC 的策略,以及利用 SC 开发用于剖析广泛的农艺重要性状的不朽作图群体的策略。可用的种质是有价值的实用资源,将有助于理解近亲繁殖衰退和杂种优势的基础,在关键的温带饲料草种中。
对额外 SC 位点遗传控制的更好理解为 SI 系统、其进化起源及其生殖意义提供了新的见解。可以容易自交的异交禾本科杂种种促进了杂种优势的研究。此外,将 SC 引入一系列草种将能够以创新的方式在遗传改良计划中利用杂种优势。