Suppr超能文献

稳定的 Picodisc 组装体来自 Saposin 蛋白和支化型清洁剂。

Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents.

出版信息

Biochemistry. 2021 Apr 13;60(14):1108-1119. doi: 10.1021/acs.biochem.0c00924. Epub 2021 Mar 23.

Abstract

Methods for maintaining membrane proteins in their native state after removal from the lipid bilayer are essential for the study of this important class of biomacromolecules. Common solubilization strategies range from the use of detergents to more complex systems that involve a polypeptide working in concert with lipids or detergents, such as nanodiscs, picodiscs, and peptidiscs, in which an engineered protein or synthetic peptide surrounds the membrane protein along with a lipid sheath. Picodiscs employ the protein saposin A, which naturally functions to facilitate lipid degradation in the lysozome. Saposin A-amphiphile complexes therefore tend to be most stable at acidic pH, which is not optimal for most membrane protein applications. In search of new picodisc assemblies, we have explored pairings of saposin A or other saposin proteins with a range of detergents, and we have identified a number of combinations that spontaneously co-assemble at neutral pH. The resulting picodiscs are stable for weeks and have been characterized by size-exclusion chromatography, native mass spectrometry, and small angle X-ray scattering. The new assemblies are formed by double-tail detergents rather than more traditional single-tail detergents; the double-tail detergents can be seen as structurally intermediate between single-tail detergents and common lipids. In addition to saposin A, an engineered variant of saposin B (designated saposin B) forms picodisc assemblies. These findings provide a framework for future efforts to solubilize membrane proteins with multiple picodisc systems that were previously unknown.

摘要

从脂质双层中去除后保持膜蛋白处于天然状态的方法对于研究这种重要的生物大分子类群至关重要。常见的增溶策略范围从使用去污剂到更复杂的系统,涉及与脂质或去污剂协同作用的多肽,例如纳米盘、皮克盘和肽盘,其中工程蛋白或合成肽与脂质鞘一起包围膜蛋白。皮克盘采用天然功能是促进溶酶体中脂质降解的类脂运载蛋白 A。因此,类脂运载蛋白 A-两亲复合物在酸性 pH 下通常最稳定,这对于大多数膜蛋白应用不是最佳的。为了寻找新的皮克盘组装体,我们探索了类脂运载蛋白 A 或其他类脂运载蛋白蛋白与一系列去污剂的配对,并且已经确定了许多在中性 pH 下自发共组装的组合。所得皮克盘稳定数周,并且已经通过尺寸排阻色谱法、天然质谱法和小角度 X 射线散射法进行了表征。新的组装体是由双尾去污剂而不是更传统的单尾去污剂形成的;双尾去污剂可以被视为介于单尾去污剂和常见脂质之间的结构中间体。除了类脂运载蛋白 A 之外,类脂运载蛋白 B 的工程变体(指定为类脂运载蛋白 B)也形成皮克盘组装体。这些发现为未来用以前未知的多个皮克盘系统溶解膜蛋白的努力提供了框架。

相似文献

1
Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents.
Biochemistry. 2021 Apr 13;60(14):1108-1119. doi: 10.1021/acs.biochem.0c00924. Epub 2021 Mar 23.
2
Interfacing Membrane Mimetics with Mass Spectrometry.
Acc Chem Res. 2016 Nov 15;49(11):2459-2467. doi: 10.1021/acs.accounts.6b00379. Epub 2016 Oct 13.
3
Direct visualization of saposin remodelling of lipid bilayers.
J Mol Biol. 2006 Oct 6;362(5):943-53. doi: 10.1016/j.jmb.2006.08.009. Epub 2006 Aug 9.
4
Saposin B is the dominant saposin that facilitates lipid binding to human CD1d molecules.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5551-6. doi: 10.1073/pnas.0700617104. Epub 2007 Mar 19.
5
Structure of saposin A lipoprotein discs.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):2908-12. doi: 10.1073/pnas.1115743109. Epub 2012 Feb 2.
6
Saposins utilize two strategies for lipid transfer and CD1 antigen presentation.
Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4357-64. doi: 10.1073/pnas.1200764109. Epub 2012 Feb 13.
7
Saposin-Lipoprotein Scaffolds for Structure Determination of Membrane Transporters.
Methods Enzymol. 2017;594:85-99. doi: 10.1016/bs.mie.2017.06.035. Epub 2017 Jul 19.
8
A model for the structure and mechanism of action of pulmonary surfactant protein B.
FASEB J. 2015 Oct;29(10):4236-47. doi: 10.1096/fj.15-273458. Epub 2015 Jun 18.
9
A saposin-lipoprotein nanoparticle system for membrane proteins.
Nat Methods. 2016 Apr;13(4):345-51. doi: 10.1038/nmeth.3801. Epub 2016 Mar 7.
10
Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research.
Structure. 2018 Feb 6;26(2):345-355.e5. doi: 10.1016/j.str.2018.01.007.

引用本文的文献

1
18-Crown-6-ether Utilizes Distinct Allosteric Interactions to Uncouple Transport by the Multidrug Efflux Pump EmrE.
Biochemistry. 2025 Sep 16;64(18):3956-3970. doi: 10.1021/acs.biochem.5c00348. Epub 2025 Sep 3.
2
Prosaposin: A Multifaceted Protein Orchestrating Biological Processes and Diseases.
Cells. 2025 Jul 22;14(15):1131. doi: 10.3390/cells14151131.
3
Human Saposin B Ligand Binding and Presentation to α-Galactosidase A.
bioRxiv. 2024 Apr 4:2024.04.04.584535. doi: 10.1101/2024.04.04.584535.

本文引用的文献

1
Membrane Chemistry Tunes the Structure of a Peptide Transporter.
Angew Chem Int Ed Engl. 2020 Oct 19;59(43):19121-19128. doi: 10.1002/anie.202008226. Epub 2020 Sep 11.
2
How Do Branched Detergents Stabilize GPCRs in Micelles?
Biochemistry. 2020 Jun 16;59(23):2125-2134. doi: 10.1021/acs.biochem.0c00183. Epub 2020 Jun 5.
3
Interactions of a Bacterial RND Transporter with a Transmembrane Small Protein in a Lipid Environment.
Structure. 2020 Jun 2;28(6):625-634.e6. doi: 10.1016/j.str.2020.03.013. Epub 2020 Apr 28.
5
Small-Angle X-ray Scattering Curves of Detergent Micelles: Effects of Asymmetry, Shape Fluctuations, Disorder, and Atomic Details.
J Phys Chem Lett. 2020 Feb 6;11(3):945-951. doi: 10.1021/acs.jpclett.9b03154. Epub 2020 Jan 22.
6
Cryo-EM structure of the native rhodopsin dimer in nanodiscs.
J Biol Chem. 2019 Sep 27;294(39):14215-14230. doi: 10.1074/jbc.RA119.010089. Epub 2019 Aug 9.
7
Comparison of lipidic carrier systems for integral membrane proteins - MsbA as case study.
Biol Chem. 2019 Oct 25;400(11):1509-1518. doi: 10.1515/hsz-2019-0171.
8
Structural insight into TRPV5 channel function and modulation.
Proc Natl Acad Sci U S A. 2019 Apr 30;116(18):8869-8878. doi: 10.1073/pnas.1820323116. Epub 2019 Apr 11.
9
Expanding the Types of Lipids Amenable to Native Mass Spectrometry of Lipoprotein Complexes.
J Am Soc Mass Spectrom. 2019 Aug;30(8):1416-1425. doi: 10.1007/s13361-019-02174-x. Epub 2019 Apr 9.
10
Structural basis for activation of voltage sensor domains in an ion channel TPC1.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9095-E9104. doi: 10.1073/pnas.1805651115. Epub 2018 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验