Suppr超能文献

离子通道 TPC1 中电压传感器结构域激活的结构基础。

Structural basis for activation of voltage sensor domains in an ion channel TPC1.

机构信息

Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143.

Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9095-E9104. doi: 10.1073/pnas.1805651115. Epub 2018 Sep 6.

Abstract

Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca-binding site (Ca), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca to a cytoplasmic site (Ca). An X-ray structure with Ca removed and a near-atomic resolution cryo-EM structure with Ca removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca ions for activation.

摘要

电压感应域(VSD)将跨膜电势能的变化与构象变化耦合起来,后者调节中央通道中的离子电导。每个传感器内的带正电荷的氨基酸协同响应电压的变化。我们之前的 TPC1 通道结构捕获了一个完整离子通道中静息状态 VSD 的示例。为了在同一通道中产生激活状态的 VSD,我们去除了腔内抑制性 Ca 结合位点(Ca),这将电压依赖性打开转移到更负的电压,并在 0 mV 时激活。低温 EM 揭示了 VSD 的两种共存结构,一种是部分关闭细胞质侧进入的中间状态 1,但在腔内侧仍然被封闭的中间激活状态 2,其中门控电荷的细胞质溶剂进入关闭,而腔内进入部分打开。可以将激活视为将 VSD 的疏水绝缘区域从外部侧移动到内部侧的另一个分组。这有效地将门控电荷从内部电位移动到外部电位。激活还需要 Ca 与细胞质位点(Ca)结合。去除 Ca 的 X 射线结构和具有近原子分辨率的低温 EM 结构去除了 Ca,定义了细胞质结构域中的构象变化如何在激活过程中与 VSD 进行通信。这四个结构为理解从静息状态到激活状态的电压依赖性转变、VSD 的热力学稳定性调节以及该通道对细胞质 Ca 离子激活的要求提供了基础。

相似文献

1
Structural basis for activation of voltage sensor domains in an ion channel TPC1.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9095-E9104. doi: 10.1073/pnas.1805651115. Epub 2018 Sep 6.
2
Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.
Nature. 2016 Mar 10;531(7593):258-62. doi: 10.1038/nature17194.
3
Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana.
Nature. 2016 Mar 10;531(7593):196-201. doi: 10.1038/nature16446. Epub 2015 Dec 21.
4
Gating of the two-pore cation channel AtTPC1 in the plant vacuole is based on a single voltage-sensing domain.
Plant Biol (Stuttg). 2016 Sep;18(5):750-60. doi: 10.1111/plb.12478. Epub 2016 Jul 12.
5
Structure prediction for the down state of a potassium channel voltage sensor.
Nature. 2007 Feb 1;445(7127):550-3. doi: 10.1038/nature05494. Epub 2006 Dec 24.
6
Molecular basis of multistep voltage activation in plant two-pore channel 1.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2110936119.
7
Voltage-gating and cytosolic Ca activation mechanisms of two-pore channel AtTPC1.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113946118.
8
On the structure and mechanism of two-pore channels.
FEBS J. 2018 Jan;285(2):233-243. doi: 10.1111/febs.14154. Epub 2017 Jul 25.
9
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
10
The contribution of RCK domains to human BK channel allosteric activation.
J Biol Chem. 2012 Jun 22;287(26):21741-50. doi: 10.1074/jbc.M112.346171. Epub 2012 May 3.

引用本文的文献

1
Examining the Thermotropic properties of Large, Circularized Nanodiscs.
bioRxiv. 2025 Apr 10:2025.04.07.647641. doi: 10.1101/2025.04.07.647641.
2
3D-aligned tetrameric ion channels with universal residue labels for comparative structural analysis.
Biophys J. 2025 Jan 21;124(2):458-470. doi: 10.1016/j.bpj.2024.12.019. Epub 2024 Dec 17.
3
Structural basis for inhibition of the lysosomal two-pore channel TPC2 by a small molecule antagonist.
Structure. 2024 Aug 8;32(8):1137-1149.e4. doi: 10.1016/j.str.2024.05.005. Epub 2024 May 29.
4
Disulfi de constrained Fabs overcome target size limitation for high-resolution single-particle cryo-EM.
bioRxiv. 2024 May 13:2024.05.10.593593. doi: 10.1101/2024.05.10.593593.
5
SV channel VfTPC1 is a hyperexcitable variant of plant vacuole Two Pore Channels.
Elife. 2023 Nov 22;12:e86384. doi: 10.7554/eLife.86384.
6
TPC1-Type Channels in : Interaction between EF-Hands and Ca.
Plants (Basel). 2022 Dec 15;11(24):3527. doi: 10.3390/plants11243527.
7
Yeast as a tool for membrane protein production and structure determination.
FEMS Yeast Res. 2022 Oct 20;22(1). doi: 10.1093/femsyr/foac047.
8
Electrically controlling and optically observing the membrane potential of supported lipid bilayers.
Biophys J. 2022 Jul 5;121(13):2624-2637. doi: 10.1016/j.bpj.2022.05.037. Epub 2022 May 25.
9
Molecular basis of multistep voltage activation in plant two-pore channel 1.
Proc Natl Acad Sci U S A. 2022 Mar 1;119(9). doi: 10.1073/pnas.2110936119.
10
Voltage-gating and cytosolic Ca activation mechanisms of two-pore channel AtTPC1.
Proc Natl Acad Sci U S A. 2021 Dec 7;118(49). doi: 10.1073/pnas.2113946118.

本文引用的文献

1
Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel.
Nature. 2018 Apr 5;556(7699):130-134. doi: 10.1038/nature26139. Epub 2018 Mar 21.
2
Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination.
J Mol Biol. 2018 Feb 2;430(3):337-347. doi: 10.1016/j.jmb.2017.12.012. Epub 2017 Dec 19.
3
On the structure and mechanism of two-pore channels.
FEBS J. 2018 Jan;285(2):233-243. doi: 10.1111/febs.14154. Epub 2017 Jul 25.
4
The chemical basis for electrical signaling.
Nat Chem Biol. 2017 Apr 13;13(5):455-463. doi: 10.1038/nchembio.2353.
5
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
Nat Methods. 2017 Apr;14(4):331-332. doi: 10.1038/nmeth.4193. Epub 2017 Feb 27.
6
cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.
Nat Methods. 2017 Mar;14(3):290-296. doi: 10.1038/nmeth.4169. Epub 2017 Feb 6.
7
Tuning the ion selectivity of two-pore channels.
Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):1009-1014. doi: 10.1073/pnas.1616191114. Epub 2017 Jan 17.
9
Structural basis for inhibition of a voltage-gated Ca channel by Ca antagonist drugs.
Nature. 2016 Sep 1;537(7618):117-121. doi: 10.1038/nature19102. Epub 2016 Aug 24.
10
Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana.
Nature. 2016 Mar 10;531(7593):258-62. doi: 10.1038/nature17194.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验