Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143.
Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637.
Proc Natl Acad Sci U S A. 2018 Sep 25;115(39):E9095-E9104. doi: 10.1073/pnas.1805651115. Epub 2018 Sep 6.
Voltage-sensing domains (VSDs) couple changes in transmembrane electrical potential to conformational changes that regulate ion conductance through a central channel. Positively charged amino acids inside each sensor cooperatively respond to changes in voltage. Our previous structure of a TPC1 channel captured an example of a resting-state VSD in an intact ion channel. To generate an activated-state VSD in the same channel we removed the luminal inhibitory Ca-binding site (Ca), which shifts voltage-dependent opening to more negative voltage and activation at 0 mV. Cryo-EM reveals two coexisting structures of the VSD, an intermediate state 1 that partially closes access to the cytoplasmic side but remains occluded on the luminal side and an intermediate activated state 2 in which the cytoplasmic solvent access to the gating charges closes, while luminal access partially opens. Activation can be thought of as moving a hydrophobic insulating region of the VSD from the external side to an alternate grouping on the internal side. This effectively moves the gating charges from the inside potential to that of the outside. Activation also requires binding of Ca to a cytoplasmic site (Ca). An X-ray structure with Ca removed and a near-atomic resolution cryo-EM structure with Ca removed define how dramatic conformational changes in the cytoplasmic domains may communicate with the VSD during activation. Together four structures provide a basis for understanding the voltage-dependent transition from resting to activated state, the tuning of VSD by thermodynamic stability, and this channel's requirement of cytoplasmic Ca ions for activation.
电压感应域(VSD)将跨膜电势能的变化与构象变化耦合起来,后者调节中央通道中的离子电导。每个传感器内的带正电荷的氨基酸协同响应电压的变化。我们之前的 TPC1 通道结构捕获了一个完整离子通道中静息状态 VSD 的示例。为了在同一通道中产生激活状态的 VSD,我们去除了腔内抑制性 Ca 结合位点(Ca),这将电压依赖性打开转移到更负的电压,并在 0 mV 时激活。低温 EM 揭示了 VSD 的两种共存结构,一种是部分关闭细胞质侧进入的中间状态 1,但在腔内侧仍然被封闭的中间激活状态 2,其中门控电荷的细胞质溶剂进入关闭,而腔内进入部分打开。可以将激活视为将 VSD 的疏水绝缘区域从外部侧移动到内部侧的另一个分组。这有效地将门控电荷从内部电位移动到外部电位。激活还需要 Ca 与细胞质位点(Ca)结合。去除 Ca 的 X 射线结构和具有近原子分辨率的低温 EM 结构去除了 Ca,定义了细胞质结构域中的构象变化如何在激活过程中与 VSD 进行通信。这四个结构为理解从静息状态到激活状态的电压依赖性转变、VSD 的热力学稳定性调节以及该通道对细胞质 Ca 离子激活的要求提供了基础。