Mousa Mohamed H, Günay Ahmet Alperen, Orejon Daniel, Khodakarami Siavash, Nawaz Kashif, Miljkovic Nenad
Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States.
Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):15925-15938. doi: 10.1021/acsami.1c02790. Epub 2021 Mar 23.
Evaporation is a ubiquitous and complex phenomenon of importance to many natural and industrial systems. Evaporation occurs when molecules near the free interface overcome intermolecular attractions with the bulk liquid. As molecules escape the liquid phase, heat is removed, causing evaporative cooling. The influence of evaporative cooling on inducing a temperature difference with the surrounding atmosphere as well as within the liquid is poorly understood. Here, we develop a technique to overcome past difficulties encountered during the study of heterogeneous droplet evaporation by coupling a piezo-driven droplet generation mechanism to a controlled micro-thermocouple to probe microdroplet evaporation. The technique allowed us to probe the gas-phase temperature distribution using a micro-thermocouple (50 μm) in the vicinity of the liquid-vapor interface with high spatial (±10 μm) and temporal (±100 ms) resolution. We experimentally map the temperature gradient formed surrounding sessile water droplets having varying curvature dictated by the apparent advancing contact angle (100° ≲ θ ≲ 165°). The experiments were carried out at temperatures below and above ambient for a range of fixed droplet radii (130 μm ≲ ≲ 330 μm). Our results provide a primary validation of the centuries-old theoretical framework underpinning heterogeneous droplet evaporation mediated by the working fluid, substrate, and gas thermophysical properties, droplet apparent contact angle, and droplet size. We show that microscale droplets residing on low-thermal-conductivity substrates such as glass absorb up to 8× more heat from the surrounding gas compared to droplets residing on high-thermal-conductivity substrates such as copper. Our work not only develops an experimental understanding of the heat transfer mechanisms governing droplet evaporation but also presents a powerful platform for the study and characterization of liquid-vapor transport at curved interfaces wetting and nonwetting advanced functional surfaces.
蒸发是一种普遍存在且复杂的现象,对许多自然和工业系统都很重要。当自由界面附近的分子克服与大量液体的分子间吸引力时,就会发生蒸发。随着分子逃离液相,热量被带走,从而导致蒸发冷却。人们对蒸发冷却在引起与周围大气以及液体内部的温差方面的影响了解甚少。在这里,我们开发了一种技术,通过将压电驱动的液滴生成机制与可控的微型热电偶耦合,以探测微滴蒸发,从而克服了过去在研究非均匀液滴蒸发过程中遇到的困难。该技术使我们能够使用微型热电偶(50μm)在液 - 气界面附近以高空间分辨率(±10μm)和时间分辨率(±100ms)探测气相温度分布。我们通过实验绘制了由表观前进接触角(100°≲θ≲165°)决定的具有不同曲率的固着水滴周围形成的温度梯度。实验在低于和高于环境温度的条件下,针对一系列固定的液滴半径(130μm≲ ≲330μm)进行。我们的结果为一个有着数百年历史的理论框架提供了初步验证,该框架基于工作流体、基底和气体的热物理性质、液滴表观接触角以及液滴尺寸来介导非均匀液滴蒸发。我们表明,与驻留在高导热率基底(如铜)上的液滴相比,驻留在低导热率基底(如玻璃)上的微尺度液滴从周围气体吸收的热量多8倍。我们的工作不仅增进了对控制液滴蒸发的传热机制的实验理解,还为研究和表征在弯曲界面处润湿和非润湿先进功能表面的液 - 气传输提供了一个强大的平台。