Suppr超能文献

表面电荷对光激活的 Janus 微马达运动的影响。

Impact of surface charge on the motion of light-activated Janus micromotors.

机构信息

Max Bergmann Center of Biomaterials and Institute for Materials Science, Technische Universität Dresden, 01062, Dresden, Germany.

Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.

出版信息

Eur Phys J E Soft Matter. 2021 Mar 23;44(3):39. doi: 10.1140/epje/s10189-021-00008-x.

Abstract

Control over micromotors' motion is of high relevance for lab-on-a-chip and biomedical engineering, wherein such particles encounter complex microenvironments. Here, we introduce an efficient way to influence Janus micromotors' direction of motion and speed by modifying their surface properties and those of their immediate surroundings. We fabricated light-responsive Janus micromotors with positive and negative surface charge, both driven by ionic self-diffusiophoresis. These were used to observe direction-of-motion reversal in proximity to glass substrates for which we varied the surface charge. Quantitative analysis allowed us to extract the dependence of the particle velocity on the surface charge density of the substrate. This constitutes the first quantitative demonstration of the substrate's surface charge on the motility of the light-activated diffusiophoretic motors in water. We provide qualitative understanding of these observations in terms of osmotic flow along the substrate generated through the ions released by the propulsion mechanism. Our results constitute a crucial step in moving toward practical application of self-phoretic artificial micromotors.

摘要

对微马达运动的控制对于芯片实验室和生物医学工程具有重要意义,因为这些粒子会遇到复杂的微环境。在这里,我们介绍了一种通过改变微马达表面特性及其周围环境来影响 Janus 微马达运动方向和速度的有效方法。我们制造了具有正、负表面电荷的光响应 Janus 微马达,它们都由离子自扩散泳驱动。我们利用这些微马达来观察在靠近玻璃基底时的运动方向反转,而我们可以改变基底的表面电荷。定量分析使我们能够提取出粒子速度与基底表面电荷密度的依赖关系。这是首次在水中用光激活扩散泳马达定量证明基底表面电荷对运动的影响。我们根据推进机制释放的离子产生的沿基底的渗透压流,从定性角度理解了这些观察结果。我们的结果是朝着实用的自泳人工微马达应用迈出的关键一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2201/7987638/99da46ff8e02/10189_2021_8_Fig1_HTML.jpg

相似文献

1
Impact of surface charge on the motion of light-activated Janus micromotors.
Eur Phys J E Soft Matter. 2021 Mar 23;44(3):39. doi: 10.1140/epje/s10189-021-00008-x.
2
Light-Driven Au-WO@C Janus Micromotors for Rapid Photodegradation of Dye Pollutants.
ACS Appl Mater Interfaces. 2017 Feb 8;9(5):4674-4683. doi: 10.1021/acsami.6b12081. Epub 2017 Jan 30.
3
Enhanced and Robust Directional Propulsion of Light-Activated Janus Micromotors by Magnetic Spinning and the Magnus Effect.
ACS Appl Mater Interfaces. 2022 Aug 10;14(31):36027-36037. doi: 10.1021/acsami.2c08464. Epub 2022 Aug 2.
4
ZnO/ZnO/Pt Janus Micromotors Propulsion Mode Changes with Size and Interface Structure: Enhanced Nitroaromatic Explosives Degradation under Visible Light.
ACS Appl Mater Interfaces. 2018 Dec 12;10(49):42688-42697. doi: 10.1021/acsami.8b16217. Epub 2018 Nov 30.
5
Ionic Species Affect the Self-Propulsion of Urease-Powered Micromotors.
Research (Wash D C). 2020 Jul 27;2020:2424972. doi: 10.34133/2020/2424972. eCollection 2020.
6
Multifunctional and self-propelled spherical Janus nano/micromotors: recent advances.
Nanoscale. 2018 Sep 13;10(35):16398-16415. doi: 10.1039/c8nr05196h.
7
High-Motility Visible Light-Driven Ag/AgCl Janus Micromotors.
Small. 2018 Nov;14(48):e1803613. doi: 10.1002/smll.201803613. Epub 2018 Oct 7.
8
Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
J Am Chem Soc. 2017 Feb 8;139(5):1722-1725. doi: 10.1021/jacs.6b09863. Epub 2017 Jan 30.
9
Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis.
Langmuir. 2018 Mar 13;34(10):3289-3295. doi: 10.1021/acs.langmuir.7b04301. Epub 2018 Feb 27.
10
Visible Light-Driven Micromotors in Fuel-Free Environment with Promoted Ion Tolerance.
Nanomaterials (Basel). 2023 Jun 8;13(12):1827. doi: 10.3390/nano13121827.

引用本文的文献

2
Editorial: Motile active matter.
Eur Phys J E Soft Matter. 2021 Aug 16;44(8):103. doi: 10.1140/epje/s10189-021-00106-w.

本文引用的文献

1
Fantastic Voyage of Nanomotors into the Cell.
ACS Nano. 2020 Aug 25;14(8):9423-9439. doi: 10.1021/acsnano.0c05217. Epub 2020 Aug 3.
2
Medical micro/nanorobots in complex media.
Chem Soc Rev. 2020 Nov 21;49(22):8088-8112. doi: 10.1039/d0cs00309c. Epub 2020 Jun 29.
3
Slip Length Dependent Propulsion Speed of Catalytic Colloidal Swimmers near Walls.
Phys Rev Lett. 2020 Jan 31;124(4):048002. doi: 10.1103/PhysRevLett.124.048002.
4
Anisotropic Exclusion Effect between Photocatalytic Ag/AgCl Janus Particles and Passive Beads in a Dense Colloidal Matrix.
Langmuir. 2020 Jun 30;36(25):7091-7099. doi: 10.1021/acs.langmuir.0c00012. Epub 2020 Feb 13.
5
3D steerable, acoustically powered microswimmers for single-particle manipulation.
Sci Adv. 2019 Oct 25;5(10):eaax3084. doi: 10.1126/sciadv.aax3084. eCollection 2019 Oct.
6
Confined 1D Propulsion of Metallodielectric Janus Micromotors on Microelectrodes under Alternating Current Electric Fields.
ACS Nano. 2019 Aug 27;13(8):8842-8853. doi: 10.1021/acsnano.9b02100. Epub 2019 Jul 25.
7
A Review of Micromotors in Confinements: Pores, Channels, Grooves, Steps, Interfaces, Chains, and Swimming in the Bulk.
ACS Appl Mater Interfaces. 2019 Feb 20;11(7):6667-6684. doi: 10.1021/acsami.8b13103. Epub 2019 Feb 11.
8
High-Motility Visible Light-Driven Ag/AgCl Janus Micromotors.
Small. 2018 Nov;14(48):e1803613. doi: 10.1002/smll.201803613. Epub 2018 Oct 7.
9
Photochemically Powered AgCl Janus Micromotors as a Model System to Understand Ionic Self-Diffusiophoresis.
Langmuir. 2018 Mar 13;34(10):3289-3295. doi: 10.1021/acs.langmuir.7b04301. Epub 2018 Feb 27.
10
Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.
ACS Appl Mater Interfaces. 2018 Jan 24;10(3):2249-2252. doi: 10.1021/acsami.7b18399. Epub 2018 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验