Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.
Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany.
Small. 2018 Nov;14(48):e1803613. doi: 10.1002/smll.201803613. Epub 2018 Oct 7.
Visible light-driven nano/micromotors are promising candidates for biomedical and environmental applications. This study demonstrates blue light-driven Ag/AgCl-based spherical Janus micromotors, which couple plasmonic light absorption with the photochemical decomposition of AgCl. These micromotors reveal high motility in pure water, i.e., mean squared displacements (MSD) reaching 800 µm within 8 s, which is 100× higher compared to previous visible light-driven Janus micromotors and 7× higher than reported ultraviolet (UV) light-driven AgCl micromotors. In addition to providing design rules to realize efficient Janus micromotors, the complex dynamics revealed by individual and assemblies of Janus motors is investigated experimentally and in simulations. The effect of suppressed rotational diffusion is focused on, compared to UV light-driven AgCl micromotors, as a reason for this remarkable increase of the MSD. Moreover, this study demonstrates the potential of using visible light-driven plasmonic Ag/AgCl-based Janus micromotors in human saliva, phosphate-buffered saline solution, the most common isotonic buffer that mimics the environment of human body fluids, and Rhodamine B solution, which is a typical polluted dye for demonstrations of photocatalytic environmental remediation. This new knowledge is useful for designing visible light driven nano/micromotors based on the surface plasmon resonance effect and their applications in assays relevant for biomedical and ecological sciences.
可见光驱动的纳米/微米马达是生物医学和环境应用的有前途的候选者。本研究展示了基于 Ag/AgCl 的蓝色光驱动的球形 Janus 微米马达,它将等离子体光吸收与 AgCl 的光化学分解结合在一起。这些微米马达在纯水中表现出高的运动性,即在 8 秒内达到 800μm 的均方根位移(MSD),这比以前的可见光驱动的 Janus 微米马达高 100 倍,比报道的紫外(UV)光驱动的 AgCl 微米马达高 7 倍。除了为实现高效 Janus 微米马达提供设计规则外,还通过实验和模拟研究了单个和组装的 Janus 马达的复杂动力学。与 UV 光驱动的 AgCl 微米马达相比,重点关注抑制旋转扩散的影响,这是 MSD 显著增加的原因。此外,本研究还展示了在人唾液、磷酸盐缓冲盐水溶液(最常见的模拟人体液环境的等渗缓冲液)和 Rhodamine B 溶液中使用可见光驱动的等离子体 Ag/AgCl 基 Janus 微米马达的潜力,Rhodamine B 溶液是用于展示光催化环境修复的典型污染染料。这些新知识对于设计基于表面等离子体共振效应的可见光驱动纳米/微米马达及其在生物医学和生态科学相关测定中的应用非常有用。