Suppr超能文献

利用微生物电位传感器信号和机器学习工具实时监测和预测水质参数和藻类浓度。

Real-time monitoring and prediction of water quality parameters and algae concentrations using microbial potentiometric sensor signals and machine learning tools.

机构信息

The Polytechnic School, Ira A. Fulton Schools of Engineering, Arizona State University, 7171 E. Sonoran Arroyo Mall, Mesa, AZ 85212, United States of America.

School of Computing, Informatics and Decision Systems Engineering, Ira A. Fulton Schools of Engineering, Arizona State University, 699 S. Mill Ave., Tempe, AZ 85281, United States of America.

出版信息

Sci Total Environ. 2021 Apr 10;764:142876. doi: 10.1016/j.scitotenv.2020.142876. Epub 2020 Oct 10.

Abstract

The overarching hypothesis of this study was that temporal microbial potentiometric sensor (MPS) signal patterns could be used to predict changes in commonly monitored water quality parameters by using artificial intelligence/machine learning tools. To test this hypothesis, the study first examines a proof of concept by correlating between MPS's signals and high algae concentrations in an algal cultivation pond. Then, the study expanded upon these findings and examined if multiple water quality parameters could be predicted in real surface waters, like irrigation canals. Signals generated between the MPS sensors and other water quality sensors maintained by an Arizona utility company, including algae and chlorophyll, were collected in real time at time intervals of 30 min over a period of 9 months. Data from the MPS system and data collected by the utility company were used to train the ML/AI algorithms and compare the predicted with actual water quality parameters and algae concentrations. Based on the composite signal obtained from the MPS, the ML/AI was used to predict the canal surface water's turbidity, conductivity, chlorophyll, and blue-green algae (BGA), dissolved oxygen (DO), and pH, and predicted values were compared to the measured values. Initial testing in the algal cultivation pond revealed a strong linear correlation (R = 0.87) between mixed liquor suspended solids (MLSS) and the MPSs' composite signals. The Normalized Root Mean Square Error (NRMSE) between the predicted values and measured values were <6.5%, except for the DO, which was 10.45%. The results demonstrate the usefulness of MPSs to predict key surface water quality parameters through a single composite signal, when the ML/AI tools are used conjunctively to disaggregate these signal components. The maintenance-free MPS offers a novel and cost-effective approach to monitor numerous water quality parameters at once with relatively high accuracy.

摘要

本研究的总体假设是,通过使用人工智能/机器学习工具,时间微生物电位传感器(MPS)信号模式可以用于预测常见监测的水质参数的变化。为了检验这一假设,该研究首先通过将 MPS 的信号与藻类培养池中的高藻类浓度相关联,来检验这一概念的可行性。然后,该研究进一步扩展了这些发现,并检验了是否可以在实际地表水(如灌溉渠)中预测多个水质参数。MPS 传感器与亚利桑那州一家公用事业公司维护的其他水质传感器之间生成的信号,在 9 个月的时间里,每隔 30 分钟实时收集一次,共收集了 9 个月。MPS 系统和公用事业公司收集的数据用于训练 ML/AI 算法,并将预测值与实际水质参数和藻类浓度进行比较。基于从 MPS 获得的综合信号,使用 ML/AI 来预测运河地表水的浊度、电导率、叶绿素和蓝绿藻(BGA)、溶解氧(DO)和 pH 值,并将预测值与实测值进行比较。在藻类培养池中的初步测试显示,混合液悬浮固体(MLSS)与 MPS 综合信号之间存在很强的线性相关性(R=0.87)。预测值与实测值之间的归一化均方根误差(NRMSE)<6.5%,除了 DO 为 10.45%。结果表明,当联合使用 ML/AI 工具来分解这些信号成分时,MPS 可以通过单个综合信号来预测关键的地表水水质参数,具有很大的应用潜力。免维护的 MPS 提供了一种新颖且具有成本效益的方法,可以相对较高的精度同时监测多个水质参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验