Universität der Bundeswehr München, Neubiberg, Germany.
ADAM/AVO, Geneva, Switzerland.
Med Phys. 2021 Jun;48(6):2733-2749. doi: 10.1002/mp.14854. Epub 2021 May 5.
Radiotherapy plays an important role for the treatment of tumor diseases in two-thirds of all cases, but it is limited by side effects in the surrounding healthy tissue. Proton minibeam radiotherapy (pMBRT) is a promising option to widen the therapeutic window for tumor control at reduced side effects. An accelerator concept based on an existing tandem Van de Graaff accelerator and a linac enables the focusing of 70 MeV protons to form minibeams with a size of only 0.1 mm for a preclinical small animal irradiation facility, while avoiding the cost of an RFQ injector.
The tandem accelerator provides a 16 MeV proton beam with a beam brightness of as averaged from 5 µs long pulses with a flat top current of 17 µA at 200 Hz repetition rate. Subsequently, the protons are accelerated to 70 MeV by a 3 GHz linear post-accelerator consisting of two Side Coupled Drift Tube Linac (SCDTL) structures and four Coupled Cavity Linac (CCL) structures [design: AVO-ADAM S.A (Geneva, Switzerland)]. A 3 GHz buncher and four magnetic quadrupole lenses are placed between the tandem and the post-accelerator to maximize the transmission through the linac. A quadrupole triplet situated downstream of the linac structure focuses the protons into an area of (0.1 × 0.1) mm . The beam dynamics of the facility is optimized using the particle optics code TRACE three-dimensional (3D). Proton transmission through the facility is elaborated using the particle tracking code TRAVEL.
A study about buncher amplitude and phase shift between buncher and linac is showing that 49% of all protons available from the tandem can be transported through the post-accelerator. A mean beam current up to 19 nA is expected within an area of (0.1 × 0.1) mm at the beam focus.
An extension of existing tandem accelerators by commercially available 3 GHz structures is able to deliver a proton minibeam that serves all requirements to obtain proton minibeams to perform preclinical minibeam irradiations as it would be the case for a complete commercial 3 GHz injector-RFQ-linac combination. Due to the modularity of the linac structure, the irradiation facility can be extended to clinically relevant proton energies up to or above 200 MeV.
放射疗法在三分之二的肿瘤疾病治疗中发挥着重要作用,但由于对周围健康组织的副作用限制了其应用。质子微射束放疗(pMBRT)是一种有前途的选择,可以在降低副作用的情况下扩大肿瘤控制的治疗窗口。一种基于现有串列 Van de Graaff 加速器和直线加速器的加速器概念,能够将 70 MeV 的质子聚焦成只有 0.1 毫米大小的微射束,用于临床前小动物辐照设施,同时避免射频四极(RFQ)注入器的成本。
串列加速器提供了一个 16 MeV 的质子束,其束亮度为从 5 μs 长的脉冲中平均得出的,脉冲平顶电流为 17 μA,重复频率为 200 Hz。随后,质子通过由两个侧向耦合漂移管直线加速器(SCDTL)结构和四个耦合腔直线加速器(CCL)结构组成的 3 GHz 直线后加速器加速到 70 MeV(设计:AVO-ADAM S.A.(瑞士日内瓦))。在串列加速器和后加速器之间放置一个 3 GHz 的聚束器和四个磁四极透镜,以最大限度地提高通过直线加速器的传输效率。在直线加速器结构的下游放置一个四极三重透镜,将质子聚焦到一个面积为(0.1×0.1)mm 的区域。使用粒子光学代码 TRACE 三维(3D)对设备的束流动力学进行了优化。使用粒子跟踪代码 TRAVEL 对质子通过设备的传输进行了详细描述。
对聚束器幅度和聚束器与直线加速器之间的相位漂移的研究表明,从串列加速器中可传输的质子有 49%可通过后加速器。在束流焦点处,预计在(0.1×0.1)mm 的面积内可获得高达 19 nA 的平均束流。
通过商业上可获得的 3 GHz 结构对现有串列加速器进行扩展,能够提供满足获取质子微射束的所有要求的质子微射束,从而能够进行临床前微射束照射,就像完全商业化的 3 GHz 注入器-RFQ-直线加速器组合一样。由于直线加速器结构的模块化,辐照设施可以扩展到临床相关的质子能量,高达或超过 200 MeV。