Suppr超能文献

催化中的泡利斥力降低概念。

The Pauli Repulsion-Lowering Concept in Catalysis.

机构信息

Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.

Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.

出版信息

Acc Chem Res. 2021 Apr 20;54(8):1972-1981. doi: 10.1021/acs.accounts.1c00016. Epub 2021 Mar 24.

Abstract

Organic chemistry has undoubtedly had a profound impact on humanity. Day in and day out, we find ourselves constantly surrounded by organic compounds. Pharmaceuticals, plastics, fuels, cosmetics, detergents, and agrochemicals, to name a few, are all synthesized by organic reactions. Very often, these reactions require a catalyst in order to proceed in a timely and selective manner. Lewis acids and organocatalysts are commonly employed to catalyze organic reactions and are considered to enhance the frontier molecular orbital (FMO) interactions. A vast number of textbooks and primary literature sources suggest that the binding of a Lewis acid or an iminium catalyst to a reactant (R1) stabilizes its LUMO and leads to a smaller HOMO(R2)-LUMO(R1) energy gap with the other reactant (R2), thus resulting in a faster reaction. This forms the basis for the so-called LUMO-lowering catalysis concept. Despite the simplicity and popularity of FMO theory, a number of deficiencies have emerged over the years, as a consequence of these FMOs not being the operative factor in the catalysis. LUMO-lowering catalysis is ultimately incomplete and is not always operative in catalyzed organic reactions. Our groups have recently undertaken a concerted effort to generate a unified framework to rationalize and predict chemical reactivity using a causal model that is rooted in quantum mechanics. In this Account, we propose the concept of Pauli repulsion-lowering catalysis to understand the catalysis in fundamental processes in organic chemistry. Our findings emerge from state-of-the-art computational methods, namely, the activation strain model (ASM) of reactivity in conjunction with quantitative Kohn-Sham molecular orbital theory (KS-MO) and a matching energy decomposition analysis (EDA). The binding of the catalyst to the substrate not only leads to a stabilization of its LUMO but also induces a significant reduction of the two-orbital, four-electron Pauli repulsion involving the key molecular orbitals of both reactants. This repulsion-lowering originates, for the textbook Lewis acid-catalyzed Diels-Alder reaction, from the catalyst polarizing the occupied π orbital of the dienophile away from the carbon atoms that form new bonds with the diene. This polarization of the occupied dienophile π orbital reduces the occupied orbital overlap with the diene and constitutes the ultimate physical factor responsible for the acceleration of the catalyzed process as compared to the analogous uncatalyzed reaction. We show that this physical mechanism is generally applicable regardless of the type of reaction (Diels-Alder and Michael addition reactions) and the way the catalyst is bonded to the reactants (i.e., from pure covalent or dative bonds to weaker hydrogen or halogen bonds). We envisage that the insights emerging from our analysis will guide future experimental developments toward the design of more efficient catalytic transformations.

摘要

有机化学无疑对人类产生了深远的影响。我们每天都发现自己不断被有机化合物包围着。药品、塑料、燃料、化妆品、洗涤剂和农用化学品只是通过有机反应合成的。这些反应通常需要催化剂才能及时、有选择性地进行。路易斯酸和有机催化剂常用于催化有机反应,被认为可以增强前沿分子轨道(FMO)相互作用。大量的教科书和主要文献资料表明,路易斯酸或亚胺催化剂与反应物(R1)结合会稳定其 LUMO,并导致与另一个反应物(R2)的 HOMO(R2)-LUMO(R1)能隙变小,从而导致反应更快。这就是所谓的降低最低空轨道催化概念的基础。尽管 FMO 理论简单且流行,但多年来,由于这些 FMO 不是催化中起作用的因素,因此出现了一些缺陷。降低最低空轨道的催化作用最终并不完整,并不总是在催化有机反应中起作用。我们的研究小组最近共同努力,使用源于量子力学的因果模型,为使用因果模型合理化和预测化学反应性建立了一个统一的框架。在本报告中,我们提出了降低 Pauli 斥力的催化作用概念,以理解有机化学基本过程中的催化作用。我们的发现来自最先进的计算方法,即反应活性的激活应变模型(ASM)与定量 Kohn-Sham 分子轨道理论(KS-MO)和匹配的能量分解分析(EDA)的结合。催化剂与底物的结合不仅会稳定其 LUMO,还会显著降低涉及两个反应物关键分子轨道的两个轨道、四电子 Pauli 斥力。对于教科书中的路易斯酸催化的 Diels-Alder 反应,这种斥力的降低源于催化剂使亲双烯体的占据π轨道极化,远离与二烯形成新键的碳原子。这种占据的亲双烯体π轨道的极化减少了占据轨道与二烯的重叠,并构成了与类似的非催化反应相比,加速催化过程的最终物理因素。我们表明,这种物理机制通常适用于任何类型的反应(Diels-Alder 和迈克尔加成反应)和催化剂与反应物的结合方式(即从纯共价或 dative 键到较弱的氢键或卤素键)。我们设想,从我们的分析中得出的见解将指导未来的实验发展,以设计更有效的催化转化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验