Suppr超能文献

通过能量分解分析和前沿分子轨道模型分析环加成反应活性

Cycloaddition Reactivities Analyzed by Energy Decomposition Analyses and the Frontier Molecular Orbital Model.

作者信息

Sengupta Arkajyoti, Li Bo, Svatunek Dennis, Liu Fang, Houk K N

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles 90095, California, United States.

Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.

出版信息

Acc Chem Res. 2022 Sep 6;55(17):2467-2479. doi: 10.1021/acs.accounts.2c00343. Epub 2022 Aug 25.

Abstract

This Account describes our quest to understand and predict organic reactivity, a principal goal of physical and theoretical organic chemistry. The focus is on the development and testing of models for the prediction of cycloaddition reactivities and selectivities. We describe the involvement of the Houk group, and other groups, in the evolution of theoretical models that can achieve ever greater accuracy as well as provide practical heuristic models for understanding and prediction.Is the venerable frontier molecular orbital (FMO) model, the basis of Kenichi Fukui's 1981 Nobel Prize, still useful, or must it be replaced with more advanced models? In particular, models such as Conceptual Density Functional, the Pauli Exclusion Model, and the recent popularity of Electrostatic Potential Plots and Dispersion Energies have not only added to our understanding, but they have also created uncertainty about whether the simple FMO heuristic model has a place in 21st century discussions. This Account addresses this issue and asserts the value of the FMO model.Beginning with brief descriptions of selected models for cycloaddition reactivity starting with early donor-acceptor (nucleophile-electrophile) charge-transfer concepts, this Account reviews Fukui's frontier molecular orbital model, Salem and Klopman's orbital, electrostatic and Pauli repulsion model, the conceptual DFT model by Parr and later by Domingo and others, the recent Houk and Bickelhaupt Distortion/Interaction Activation Strain model, and the Bickelhaupt-Hamlin's Pauli-repulsion lowering model.Computations and analyses of four well-studied Diels-Alder cycloadditions, both normal and inverse electron-demand types, are presented. Most were studied earlier in our published work but are presented here with new insights from calculations with modern methods. Depending on the types of substrates (cycloaddends), the dominant factors controlling reactivity can be orbital interactions, electrostatics and polarization, or Pauli repulsion and dispersion effects, or a combination of all of these.By comparing orbital interactions, especially the frontier molecular orbital interactions, with the other factors that influence reactivity, we show why the FMO model is such a powerful─and theoretically meaningful─heuristic for understanding and predicting reactivity. We also present a method to understand Pauli repulsion effects on activation barriers, ρ(1.1). The use of a new reaction coordinate, the extent of Pauli repulsion along the reaction path, is advocated to emphasize the role of repulsive occupied orbital interactions on reactivity.Fukui's frontier molecular orbital model is effective because FMO interactions parallel all the quantities that influence reactivity. The FMO model continues to provide a practical model to understand and guide experiments.

摘要

本综述描述了我们理解和预测有机反应活性的探索历程,这是物理有机化学和理论有机化学的一个主要目标。重点在于环加成反应活性和选择性预测模型的开发与测试。我们描述了霍克团队以及其他团队在理论模型发展过程中的参与情况,这些模型能够实现更高的准确性,同时也能为理解和预测提供实用的启发式模型。有着悠久历史的前沿分子轨道(FMO)模型是福井谦一1981年诺贝尔奖的基础,它现在仍然有用吗?还是必须被更先进的模型所取代?特别是,诸如概念密度泛函、泡利排斥模型以及最近静电势图和色散能的流行,不仅增进了我们的理解,也引发了关于简单的FMO启发式模型在21世纪的讨论中是否还有一席之地的疑问。本综述探讨了这个问题,并肯定了FMO模型的价值。

本综述首先简要介绍了从早期供体 - 受体(亲核试剂 - 亲电试剂)电荷转移概念开始的环加成反应活性的选定模型,然后回顾了福井的前沿分子轨道模型、塞勒姆和克洛普曼的轨道、静电和泡利排斥模型、帕尔以及后来多明戈等人提出的概念密度泛函理论模型、最近霍克和比克尔豪普特的扭曲/相互作用活化应变模型以及比克尔豪普特 - 哈姆林的泡利排斥降低模型。

文中给出了对四个经过充分研究的狄尔斯 - 阿尔德环加成反应(包括正常电子需求型和逆电子需求型)的计算与分析。大多数反应在我们之前发表的工作中已有研究,但此处通过现代方法的计算给出了新的见解。根据底物(环加成反应物)的类型,控制反应活性的主要因素可以是轨道相互作用、静电作用和极化作用、泡利排斥和色散效应,或者是所有这些因素的组合。

通过将轨道相互作用,特别是前沿分子轨道相互作用,与影响反应活性的其他因素进行比较,我们展示了为什么FMO模型对于理解和预测反应活性是如此强大且在理论上有意义的启发式方法。我们还提出了一种理解泡利排斥对活化能垒影响的方法,即ρ(1.1)。提倡使用一种新的反应坐标,即沿着反应路径的泡利排斥程度,来强调排斥性占据轨道相互作用对反应活性的作用。

福井的前沿分子轨道模型之所以有效,是因为FMO相互作用与所有影响反应活性的量并行。FMO模型继续为理解和指导实验提供实用的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验