Suppr超能文献

通过基于结构的药效团虚拟筛选发现、评价和分子动力学模拟丁酰胆碱酯酶抑制剂。

Discovery, biological evaluation and molecular dynamic simulations of butyrylcholinesterase inhibitors through structure-based pharmacophore virtual screening.

机构信息

School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.

出版信息

Future Med Chem. 2021 May;13(9):769-784. doi: 10.4155/fmc-2020-0325. Epub 2021 Mar 24.

Abstract

Butyrylcholinesterase (BChE) is a crucial therapeutic target because it is associated with multiple pathological elements of Alzheimer's disease (AD). An integrated computational strategy was employed to exploit effective BChE inhibitors. Ten compounds derived from the Enamine database by structure-based pharmacophore virtual screening were further evaluated for biological activity; out of the ten, only five had an IC of less than 100 μM. Among these five compounds, a new molecule, , presented the most potency against BChE, with an IC of 4.24 ± 0.16 μM, and acted as a mixed-type inhibitor. Molecular dynamic simulations and absorption, distribution, metabolism and excretion prediction further confirmed its high potential as a good candidate of BChE inhibitor. Furthermore, cytotoxicity of molecule was not observed at concentrations up to 50 μM, and the molecule also showed a prominent neuroprotective effect compared with tacrine at 25 and 50 μM. This study provides an effective structure-based pharmacophore virtual screening method to discover BChE inhibitors and provide new choices for the development of BChE inhibitors, which may be beneficial for AD patients.

摘要

丁酰胆碱酯酶(BChE)是一个重要的治疗靶点,因为它与阿尔茨海默病(AD)的多种病理因素有关。本研究采用了一种综合的计算策略来开发有效的 BChE 抑制剂。通过基于结构的药效团虚拟筛选从 Enamine 数据库中得到的十种化合物,进一步评估了它们的生物活性;在这十种化合物中,只有五种的 IC 低于 100μM。在这五种化合物中,一种新的分子 对 BChE 的抑制作用最强,IC 为 4.24±0.16μM,表现为混合类型抑制剂。分子动力学模拟和吸收、分布、代谢和排泄预测进一步证实了其作为 BChE 抑制剂的良好候选物的高潜力。此外,分子 在高达 50μM 的浓度下没有观察到细胞毒性,并且与他克林相比,该分子在 25 和 50μM 时表现出明显的神经保护作用。这项研究提供了一种有效的基于结构的药效团虚拟筛选方法来发现 BChE 抑制剂,为 BChE 抑制剂的开发提供了新的选择,这可能对 AD 患者有益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验