Suppr超能文献

重新思考路面三维重建与坑洼检测:从透视变换到视差图分割

Rethinking Road Surface 3-D Reconstruction and Pothole Detection: From Perspective Transformation to Disparity Map Segmentation.

作者信息

Fan Rui, Ozgunalp Umar, Wang Yuan, Liu Ming, Pitas Ioannis

出版信息

IEEE Trans Cybern. 2022 Jul;52(7):5799-5808. doi: 10.1109/TCYB.2021.3060461. Epub 2022 Jul 4.

Abstract

Potholes are one of the most common forms of road damage, which can severely affect driving comfort, road safety, and vehicle condition. Pothole detection is typically performed by either structural engineers or certified inspectors. However, this task is not only hazardous for the personnel but also extremely time consuming. This article presents an efficient pothole detection algorithm based on road disparity map estimation and segmentation. We first incorporate the stereo rig roll angle into shifting distance calculation to generalize perspective transformation. The road disparities are then efficiently estimated using semiglobal matching. A disparity map transformation algorithm is then performed to better distinguish the damaged road areas. Subsequently, we utilize simple linear iterative clustering to group the transformed disparities into a collection of superpixels. The potholes are finally detected by finding the superpixels, whose intensities are lower than an adaptively determined threshold. The proposed algorithm is implemented on an NVIDIA RTX 2080 Ti GPU in CUDA. The experimental results demonstrate that our proposed road pothole detection algorithm achieves state-of-the-art accuracy and efficiency.

摘要

坑洼是道路损坏最常见的形式之一,会严重影响驾驶舒适性、道路安全和车辆状况。坑洼检测通常由结构工程师或认证检查员进行。然而,这项任务不仅对人员有危险,而且极其耗时。本文提出了一种基于道路视差图估计和分割的高效坑洼检测算法。我们首先将立体相机组的滚动角纳入位移距离计算,以推广透视变换。然后使用半全局匹配有效地估计道路视差。接着执行视差图变换算法,以更好地区分受损道路区域。随后,我们利用简单线性迭代聚类将变换后的视差分组为超像素集合。最后通过找到强度低于自适应确定阈值的超像素来检测坑洼。所提出的算法在CUDA中的NVIDIA RTX 2080 Ti GPU上实现。实验结果表明,我们提出的道路坑洼检测算法达到了当前的先进精度和效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验