Institut Terre et Environnement de Strasbourg (ITES), Université de Strasbourg/EOST/ENGEES, CNRS UMR 7063, 5 rue Descartes, F-67084 Strasbourg, France.
Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, CNRS, 12 rue du Général Zimmer, 67084 Strasbourg, France.
Environ Sci Technol. 2021 Apr 20;55(8):4720-4728. doi: 10.1021/acs.est.0c06283. Epub 2021 Mar 24.
Current approaches are often limited to evaluating the contribution of pesticide dissipation processes in water-sediment systems as both degradation and phase transfer, that is, sorption-desorption, contribute to the apparent decrease of pesticide concentration. Here, the dissipation of widely used herbicides acetochlor and -metolachlor was examined in laboratory by water-sediment microcosm experiments under oxic and anoxic conditions. Compound-specific isotope analysis (CSIA) emphasized insignificant carbon isotope fractionation in the sediment, indicating prevailing pesticide degradation in the water phase. Conceptual modeling accounting for phase transfer and biodegradation indicated that biodegradation may be underestimated when phase transfer is not included. Phase transfer does not affect carbon isotope fractionation for a wide spectrum of molecules and environmental conditions, underscoring the potential of pesticide CSIA as a robust approach to evaluate degradation in water-sediment systems. CSIA coupled with the identification of transformation products by high-resolution tandem mass spectrometry suggests the degradation of acetochlor and -metolachlor to occur via nucleophilic substitution and the predominance of oxalinic acids as transformation products under both anoxic and oxic conditions. Altogether, combining the pesticide CSIA, the identification of transformation products, and the use of conceptual phase-transfer models improves the interpretation of pesticide dissipation in water-sediment systems.
目前的方法通常仅限于评估水-沉积物系统中农药消散过程的贡献,因为降解和相转移(即吸附-解吸)都有助于农药浓度的明显下降。在这里,通过好氧和缺氧条件下的实验室水-沉积物微宇宙实验,研究了广泛使用的除草剂乙草胺和甲草胺的消散情况。基于化合物的稳定同位素分析(CSIA)强调了沉积物中碳同位素分馏不明显,表明水相中存在主要的农药降解。考虑到相转移和生物降解的概念模型表明,如果不包括相转移,生物降解可能会被低估。相转移不会影响广泛分子和环境条件下的碳同位素分馏,这突显了农药 CSIA 作为评估水-沉积物系统中降解的稳健方法的潜力。CSIA 与通过高分辨率串联质谱鉴定转化产物相结合,表明乙草胺和甲草胺的降解是通过亲核取代发生的,并且在好氧和缺氧条件下,草酰基酸是主要的转化产物。总的来说,将农药 CSIA、转化产物的鉴定和概念相转移模型的使用相结合,可以提高对水-沉积物系统中农药消散的解释。