Suppr超能文献

合并症对 COVID-19 重症和非重症患者的潜在影响:系统评价和荟萃分析。

Comorbidities' potential impacts on severe and non-severe patients with COVID-19: A systematic review and meta-analysis.

机构信息

Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, Hunan Province.

College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang, Guizhou Province.

出版信息

Medicine (Baltimore). 2021 Mar 26;100(12):e24971. doi: 10.1097/MD.0000000000024971.

Abstract

BACKGROUND

An ongoing outbreak of pneumonia associated with the severe acute respiratory coronavirus (SARS-CoV-2) emerged in December 2019 in Wuhan, China. Epidemiologic evidence suggests that patients with comorbidities and novel coronavirus disease 2019 (COVID-19) infection may have poor survival outcomes. However, the risk of these coexisting medical conditions in severe and non-severe cases has not been systematically reported.

PURPOSE

The present study aimed to estimate the association of chronic comorbidities in severe and non-severe cases.

METHODS

A literature search was conducted using the databases PubMed, Embase, China National Knowledge Infrastructure (CNKI), and Wanfang Database, Chinese Scientific Journals Full-text Database (CQVIP) from the inception dates to April 1, 2020, to identify cohort studies assessing comorbidity and risk of adverse outcome. Either a fixed- or random-effects model was used to calculate the overall combined risk estimates.

RESULTS

A total of 22 studies involving 3286 patients with laboratory-confirmed COVID-19 were included in the analysis. Overall, compared with the patients with non-severe cases, the pooled odds ratios (ORs) of hypertension, diabetes mellitus, and cardiovascular, cerebrovascular, and respiratory diseases in patients with severe cases were 2.79 (95% confidence intervals [95% CI]: 1.66-4.69), 1.64 (95% CI: 2.30-1.08), 1.79 (95% CI: 1.08-2.96), 3.92 (95% CI: 2.45-6.28), and 1.98 (95% CI: 1.26-3.12), respectively.

CONCLUSIONS

This meta-analysis supports the finding that chronic comorbidities may contribute to severe outcome in patients with COVID-19. According to the findings of the present study, old age and 2 or more comorbidities are significantly impactful to COVID-19 outcomes in hospitalized patients in China.

摘要

背景

2019 年 12 月,中国武汉爆发了与严重急性呼吸冠状病毒(SARS-CoV-2)相关的肺炎疫情。流行病学证据表明,患有合并症的新型冠状病毒病 2019(COVID-19)感染者可能预后不良。然而,严重和非严重病例中这些共存的医疗条件的风险尚未得到系统报告。

目的

本研究旨在评估严重和非严重病例中慢性合并症的相关性。

方法

使用数据库 PubMed、Embase、中国知识基础设施(CNKI)和万方数据库、中国科技期刊全文数据库(CQVIP)从创建日期到 2020 年 4 月 1 日进行文献检索,以确定评估合并症和不良结局风险的队列研究。使用固定或随机效应模型计算总体合并风险估计值。

结果

共纳入 22 项涉及 3286 例实验室确诊 COVID-19 患者的研究。总体而言,与非严重病例相比,严重病例中高血压、糖尿病、心血管、脑血管和呼吸系统疾病的合并比值比(OR)分别为 2.79(95%置信区间[95%CI]:1.66-4.69)、1.64(95%CI:2.30-1.08)、1.79(95%CI:1.08-2.96)、3.92(95%CI:2.45-6.28)和 1.98(95%CI:1.26-3.12)。

结论

这项荟萃分析支持慢性合并症可能导致 COVID-19 患者出现严重结局的发现。根据本研究的结果,中国住院患者的年龄较大和 2 种或更多合并症对 COVID-19 结局有显著影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e713/9281964/6ab844c261e4/medi-100-e24971-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验