Institute for Hydrology, Technische Universität Dresden, 01069, Dresden, Germany.
Ground Water. 2021 Sep;59(5):728-744. doi: 10.1111/gwat.13098. Epub 2021 Apr 4.
Highly detailed physically based groundwater models are often applied to make predictions of system states under unknown forcing. The required analysis of uncertainty is often unfeasible due to the high computational demand. We combine two possible solution strategies: (1) the use of faster surrogate models; and (2) a robust data worth analysis combining quick first-order second-moment uncertainty quantification with null-space Monte Carlo techniques to account for parametric uncertainty. A structurally and parametrically simplified model and a proper orthogonal decomposition (POD) surrogate are investigated. Data worth estimations by both surrogates are compared against estimates by a complex MODFLOW benchmark model of an aquifer in New Zealand. Data worth is defined as the change in post-calibration predictive uncertainty of groundwater head, river-groundwater exchange flux, and drain flux data, compared to the calibrated model. It incorporates existing observations, potential new measurements of system states ("additional" data) as well as knowledge of model parameters ("parametric" data). The data worth analysis is extended to account for non-uniqueness of model parameters by null-space Monte Carlo sampling. Data worth estimates of the surrogates and the benchmark suggest good agreement for both surrogates in estimating worth of existing data. The structural simplification surrogate only partially reproduces the worth of "additional" data and is unable to estimate "parametric" data, while the POD model is in agreement with the complex benchmark for both "additional" and "parametric" data. The variance of the POD data worth estimates suggests the need to account for parameter non-uniqueness, like presented here, for robust results.
高度详细的基于物理的地下水模型通常用于预测未知驱动力下的系统状态。由于计算需求高,通常无法进行所需的不确定性分析。我们结合了两种可能的解决方案策略:(1)使用更快的替代模型;(2)稳健的数据价值分析,结合快速一阶二阶矩不确定性量化和零空间蒙特卡罗技术来考虑参数不确定性。研究了结构和参数简化模型以及适当的正交分解(POD)替代模型。通过这两种替代模型进行的数据价值估算与对新西兰含水层的复杂 MODFLOW 基准模型的估算进行了比较。数据价值定义为地下水头、河地下水交换通量和排水通量数据的校准后预测不确定性的变化,与校准模型相比。它包含了现有观测值、系统状态的潜在新测量值(“附加”数据)以及模型参数的知识(“参数”数据)。通过零空间蒙特卡罗抽样,扩展了数据价值分析以考虑模型参数的非唯一性。替代模型和基准模型的数据价值估算表明,替代模型在估算现有数据的价值方面具有很好的一致性。结构简化替代模型仅部分再现了“附加”数据的价值,并且无法估计“参数”数据,而 POD 模型在“附加”和“参数”数据方面与复杂基准模型一致。POD 数据价值估算的方差表明,需要像这里一样考虑参数的非唯一性,以获得稳健的结果。