Tuberculosis Research Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
Cell Chem Biol. 2021 Aug 19;28(8):1180-1191.e20. doi: 10.1016/j.chembiol.2021.02.023. Epub 2021 Mar 24.
Tryptophan biosynthesis represents an important potential drug target for new anti-TB drugs. We identified a series of indole-4-carboxamides with potent antitubercular activity. In vitro, Mycobacterium tuberculosis (Mtb) acquired resistance to these compounds through three discrete mechanisms: (1) a decrease in drug metabolism via loss-of-function mutations in the amidase that hydrolyses these carboxamides, (2) an increased biosynthetic rate of tryptophan precursors via loss of allosteric feedback inhibition of anthranilate synthase (TrpE), and (3) mutation of tryptophan synthase (TrpAB) that decreased incorporation of 4-aminoindole into 4-aminotryptophan. Thus, these indole-4-carboxamides act as prodrugs of a tryptophan antimetabolite, 4-aminoindole.
色氨酸生物合成是新抗结核药物的一个重要潜在药物靶点。我们鉴定了一系列具有强大抗结核活性的吲哚-4-羧酰胺。在体外,结核分枝杆菌(Mtb)通过三种不同的机制获得对这些化合物的耐药性:(1)通过水解这些羧酰胺的酰胺酶的功能丧失突变导致药物代谢减少,(2)通过失去对色氨酸合成酶(TrpE)的变构反馈抑制,增加色氨酸前体的生物合成速率,和(3)色氨酸合酶(TrpAB)的突变导致 4-氨基吲哚掺入 4-氨基色氨酸减少。因此,这些吲哚-4-羧酰胺作为色氨酸抗代谢物 4-氨基吲哚的前药起作用。