Suppr超能文献

成人多次急诊科就诊的预测模型:来自全国药物使用和健康调查(NSDUH)的数据分析。

Predictive model of multiple emergency department visits among adults: analysis of the data from the National Survey of Drug Use and Health (NSDUH).

作者信息

Bobashev Georgiy, Warren Lauren, Wu Li-Tzy

机构信息

RTI International, 3040 Cornwallis Rd., P.O. Box 12194, Research Triangle Park, NC, 27709, USA.

Department of Psychiatry and Behavioral Sciences and Department of Medicine, Duke University School of Medicine, Box 3903, Durham, NC, 27710, USA.

出版信息

BMC Health Serv Res. 2021 Mar 25;21(1):280. doi: 10.1186/s12913-021-06221-w.

Abstract

BACKGROUND

In this methodological paper, we use a novel, predictive approach to examine how demographics, substance use, mental and other health indicators predict multiple visits (≥3) to emergency departments (ED) within a year.

METHODS

State-of-the-art predictive methods were used to evaluate predictive ability and factors predicting multiple visits to ED within a year and to identify factors that influenced the strength of the prediction. The analysis used public-use datasets from the 2015-2018 National Surveys on Drug Use and Health (NSDUH), which used the same questionnaire on the variables of interest. Analysis focused on adults aged ≥18 years. Several predictive models (regressions, trees, and random forests) were validated and compared on independent datasets.

RESULTS

Predictive ability on a test set for multiple ED visits (≥3 times within a year) measured as the area under the receiver operating characteristic (ROC) reached 0.8, which is good for a national survey. Models revealed consistency in predictive factors across the 4 survey years. The most influential variables for predicting ≥3 ED visits per year were fair/poor self-rated health, being nervous or restless/fidgety, having a lower income, asthma, heart condition/disease, having chronic obstructive pulmonary disease (COPD), nicotine dependence, African-American race, female sex, having diabetes, and being of younger age (18-20).

CONCLUSIONS

The findings reveal the need to address behavioral and mental health contributors to ED visits and reinforce the importance of developing integrated care models in primary care settings to improve mental health for medically vulnerable patients. The presented modeling approach can be broadly applied to national and other large surveys.

摘要

背景

在这篇方法学论文中,我们采用一种新颖的预测方法来研究人口统计学、物质使用、心理及其他健康指标如何预测一年内多次(≥3次)前往急诊科(ED)就诊的情况。

方法

运用最先进的预测方法来评估预测能力以及预测一年内多次前往急诊科就诊的因素,并确定影响预测强度的因素。分析使用了2015 - 2018年全国药物使用和健康调查(NSDUH)的公共使用数据集,该数据集针对感兴趣的变量使用了相同的问卷。分析聚焦于年龄≥18岁的成年人。在独立数据集上对几种预测模型(回归、决策树和随机森林)进行了验证和比较。

结果

以受试者工作特征曲线(ROC)下面积衡量的针对多次急诊科就诊(一年内≥3次)测试集的预测能力达到0.8,这对于全国性调查来说是不错的。模型显示在4个调查年份中预测因素具有一致性。预测每年≥3次急诊科就诊的最具影响力变量为自我评估健康状况为一般/较差、紧张或坐立不安/烦躁、收入较低、哮喘、心脏病、患有慢性阻塞性肺疾病(COPD)、尼古丁依赖、非裔美国人种族、女性、患有糖尿病以及年龄较小(18 - 20岁)。

结论

研究结果揭示了需要解决导致前往急诊科就诊的行为和心理健康因素,并强调了在初级保健环境中开发综合护理模式以改善医疗脆弱患者心理健康的重要性。所提出的建模方法可广泛应用于全国性及其他大型调查。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b98b/7995604/287cba7bb968/12913_2021_6221_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验