Electronic Engineering Post-Graduation Program, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
Pulmonary Function Laboratory, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
Biomed Eng Online. 2021 Mar 25;20(1):31. doi: 10.1186/s12938-021-00865-9.
The use of machine learning (ML) methods would improve the diagnosis of respiratory changes in systemic sclerosis (SSc). This paper evaluates the performance of several ML algorithms associated with the respiratory oscillometry analysis to aid in the diagnostic of respiratory changes in SSc. We also find out the best configuration for this task.
Oscillometric and spirometric exams were performed in 82 individuals, including controls (n = 30) and patients with systemic sclerosis with normal (n = 22) and abnormal (n = 30) spirometry. Multiple instance classifiers and different supervised machine learning techniques were investigated, including k-Nearest Neighbors (KNN), Random Forests (RF), AdaBoost with decision trees (ADAB), and Extreme Gradient Boosting (XGB).
The first experiment of this study showed that the best oscillometric parameter (BOP) was dynamic compliance, which provided moderate accuracy (AUC = 0.77) in the scenario control group versus patients with sclerosis and normal spirometry (CGvsPSNS). In the scenario control group versus patients with sclerosis and altered spirometry (CGvsPSAS), the BOP obtained high accuracy (AUC = 0.94). In the second experiment, the ML techniques were used. In CGvsPSNS, KNN achieved the best result (AUC = 0.90), significantly improving the accuracy in comparison with the BOP (p < 0.01), while in CGvsPSAS, RF obtained the best results (AUC = 0.97), also significantly improving the diagnostic accuracy (p < 0.05). In the third, fourth, fifth, and sixth experiments, different feature selection techniques allowed us to spot the best oscillometric parameters. They resulted in a small increase in diagnostic accuracy in CGvsPSNS (respectively, 0.87, 0.86, 0.82, and 0.84), while in the CGvsPSAS, the best classifier's performance remained the same (AUC = 0.97).
Oscillometric principles combined with machine learning algorithms provide a new method for diagnosing respiratory changes in patients with systemic sclerosis. The present study's findings provide evidence that this combination may help in the early diagnosis of respiratory changes in these patients.
机器学习(ML)方法的应用将有助于系统性硬化症(SSc)患者呼吸系统变化的诊断。本文评估了几种与呼吸震荡分析相关的 ML 算法在辅助 SSc 患者呼吸系统变化诊断方面的性能。我们还发现了完成这项任务的最佳配置。
对 82 名个体进行了震荡和肺活量检查,包括对照组(n=30)和系统性硬化症患者,其中包括正常(n=22)和异常(n=30)肺活量的患者。研究了多种多实例分类器和不同的监督机器学习技术,包括 k-最近邻(KNN)、随机森林(RF)、基于决策树的自适应增强(ADAB)和极端梯度提升(XGB)。
本研究的第一个实验表明,最佳震荡参数(BOP)是动态顺应性,在对照组与硬化症和正常肺活量患者(CGvsPSNS)的情况下,该参数提供了中等准确性(AUC=0.77)。在对照组与硬化症和改变肺活量的患者(CGvsPSAS)的情况下,BOP 获得了高准确性(AUC=0.94)。在第二个实验中,使用了机器学习技术。在 CGvsPSNS 中,KNN 获得了最佳结果(AUC=0.90),与 BOP 相比显著提高了准确性(p<0.01),而在 CGvsPSAS 中,RF 获得了最佳结果(AUC=0.97),也显著提高了诊断准确性(p<0.05)。在第三个、第四个、第五个和第六个实验中,不同的特征选择技术使我们能够发现最佳的震荡参数。在 CGvsPSNS 中,这导致了诊断准确性的微小提高(分别为 0.87、0.86、0.82 和 0.84),而在 CGvsPSAS 中,最佳分类器的性能保持不变(AUC=0.97)。
震荡测量原理与机器学习算法相结合,为系统性硬化症患者呼吸系统变化的诊断提供了一种新方法。本研究结果表明,这种组合可能有助于早期诊断这些患者的呼吸系统变化。