Suppr超能文献

两个系统发生树的刚性混合数。

The rigid hybrid number for two phylogenetic trees.

机构信息

School of Computing Sciences, University of East Anglia, Norwich, UK.

School of Computer Science, University of Auckland, Auckland, New Zealand.

出版信息

J Math Biol. 2021 Mar 26;82(5):40. doi: 10.1007/s00285-021-01594-2.

Abstract

Recently there has been considerable interest in the problem of finding a phylogenetic network with a minimum number of reticulation vertices which displays a given set of phylogenetic trees, that is, a network with minimum hybrid number. Such networks are useful for representing the evolution of species whose genomes have undergone processes such as lateral gene transfer and recombination that cannot be represented appropriately by a phylogenetic tree. Even so, as was recently pointed out in the literature, insisting that a network displays the set of trees can be an overly restrictive assumption when modeling certain evolutionary phenomena such as incomplete lineage sorting. In this paper, we thus consider the less restrictive notion of rigidly displaying which we introduce and study here. More specifically, we characterize when two trees can be rigidly displayed by a certain type of phylogenetic network called a temporal tree-child network in terms of fork-picking sequences. These are sequences of special subconfigurations of the two trees related to the well-studied cherry-picking sequences. We also show that, in case it exists, the rigid hybrid number for two phylogenetic trees is given by a minimum weight fork-picking sequence for the trees. Finally, we consider the relationship between the rigid hybrid number and three closely related numbers; the weak, beaded, and temporal hybrid numbers. In particular, we show that these numbers can all be different even for a fixed pair of trees, and also present an infinite family of pairs of trees which demonstrates that the difference between the rigid hybrid number and the temporal-hybrid number for two phylogenetic trees on the same set of n leaves can grow at least linearly with n.

摘要

最近,人们对寻找具有最小融合顶点数的系统发育网络以显示给定的一组系统发育树(即具有最小杂交数的网络)的问题产生了极大的兴趣。这种网络对于表示其基因组经历了侧向基因转移和重组等过程的物种的进化很有用,这些过程不能通过系统发育树来适当表示。即便如此,正如最近文献中指出的那样,当对不完全谱系分选等某些进化现象进行建模时,坚持网络显示出一组树可能是一种过于严格的假设。因此,在本文中,我们考虑了更具限制性的刚性显示概念,并在此进行了研究。更具体地说,我们根据 fork-picking 序列来刻画何时可以通过称为时间树-子树网络的特定类型的系统发育网络刚性地显示两棵树。这些序列是与广泛研究的樱桃采摘序列相关的两棵树的特殊子结构的特殊子配置序列。我们还表明,在存在的情况下,两棵系统发育树的刚性杂交数由树的最小权重 fork-picking 序列给出。最后,我们考虑了刚性杂交数与三个密切相关的数之间的关系;弱、珠状和时间杂交数。特别是,我们表明,即使对于固定的树对,这些数也可能不同,并且还提出了一对树的无限家族,该家族表明了两棵树的刚性杂交数和时间杂交数之间的差异在相同的 n 个叶集上至少可以线性增长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/038d/7997861/a6fc58d29a39/285_2021_1594_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验