Suppr超能文献

基于区间机会约束规划的碳捕集、利用与封存系统规划优化模型。

An interval chance-constrained programming-based optimization model for carbon capture, utilization, and storage system planning.

机构信息

School of Environment, Tsinghua University, Beijing 100084, China.

School of Environment, Tsinghua University, Beijing 100084, China.

出版信息

Sci Total Environ. 2021 Jun 10;772:145560. doi: 10.1016/j.scitotenv.2021.145560. Epub 2021 Feb 2.

Abstract

Carbon capture, utilization, and storage (CCUS) are widely regarded as a crucial technological option for industrial large-scale carbon dioxide (CO) emissions reduction. However, high-cost and uncertainties hinder the widespread application of CCUS technology. In this study, an interval-chance-constrained programming-based optimization model was proposed to address random probability distributions, interval values, complex interactions, and the dynamics of capacity expansion issues. The model was applied to a CCUS project in China. A set of violation probability levels (0.01, 0.05, 0.1, and 0.2) were designed to reflect system costs and risk levels. And then the solutions for system costs, capacity expansion, and operating schemes under four violation probability levels (p) could be generated. The results revealed that the model could ensure the highest reliability and largest CO storage under p = 0.01. At this probability level, the amount of CO storage would range from 4972.05-5429.75 kilotons per annum (ktpa), the CCUS system cost would be highest at $166.57 million, and the net system benefits would be slightly less at $105.91 million. If policymakers strive to achieve the net system benefits of the project, the highest net system benefits would be achieved under p = 0.05. At this probability level, the net system benefits would increase to $135.45 million, the system cost would reduce to $138.62 million, but the total amount of CO storage would decrease to between 4090.01 and 4653.24 ktpa, which would entail a high risk of system violation. These findings enable policymakers to determine the trade-offs among system reliability, CO reduction, and the benefits of the project. The modeling approach can also address interactions among CCUS activities and the dynamics of facility expansion issues as well as help policymakers develop adaptive operational strategies. This study enriches CCUS research through an interval chance-constrained optimization modeling approach for CCUS system management under multiple uncertainties.

摘要

碳捕获、利用与封存(CCUS)被广泛认为是减少工业大规模二氧化碳(CO)排放的关键技术选择。然而,高成本和不确定性阻碍了 CCUS 技术的广泛应用。在本研究中,提出了一种基于区间机会约束规划的优化模型,以解决随机概率分布、区间值、复杂交互和容量扩展问题的动态性。该模型应用于中国的一个 CCUS 项目。设计了一组违反概率水平(0.01、0.05、0.1 和 0.2),以反映系统成本和风险水平。然后,可以生成四个违反概率水平(p)下的系统成本、容量扩展和运行方案的解决方案。结果表明,该模型可以在 p=0.01 下确保最高的可靠性和最大的 CO 封存量。在这个概率水平下,CO 的封存量将在 4972.05-5429.75 千吨/年(ktpa)之间,CCUS 系统成本将高达 1.6657 亿美元,净系统收益将略低至 1.0591 亿美元。如果政策制定者努力实现项目的净系统收益,那么在 p=0.05 下将获得最高的净系统收益。在这个概率水平下,净系统收益将增加到 1.3545 亿美元,系统成本将降低到 1.3862 亿美元,但 CO 的总封存量将减少到 4090.01-4653.24 ktpa,这将带来系统违反的高风险。这些发现使政策制定者能够在系统可靠性、CO 减排和项目收益之间做出权衡。该建模方法还可以解决 CCUS 活动之间的相互作用和设施扩展问题的动态性,并帮助政策制定者制定适应性的运营策略。本研究通过区间机会约束优化建模方法丰富了 CCUS 研究,为多不确定性下的 CCUS 系统管理提供了一种方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验