Suppr超能文献

用于紫外光通信系统的具有低网络复杂度的混合频域辅助时间卷积神经网络。

Hybrid frequency domain aided temporal convolutional neural network with low network complexity utilized in UVLC system.

作者信息

Chen Hui, Jia Junlian, Niu Wenqing, Zhao Yiheng, Chi Nan

出版信息

Opt Express. 2021 Feb 1;29(3):3296-3308. doi: 10.1364/OE.417888.

Abstract

Deep neural network has been used to compensate the nonlinear distortion in the field of underwater visible light communication (UVLC) system. Considering the tradeoff between the equalization performance and the network complexity is the priority in practical applications. In this paper, we propose a novel hybrid frequency domain aided temporal convolutional neural network (TFCNN) with attention scheme as the post-equalizer in CAP modulated UVLC system. Experiments illustrate that the proposed TFCNN can achieve better equalization performance and remain the bit error rate (BER) below the 7% hard-decision forward error correction (HD-FEC) limit of 3.8×10 when other equalizers loss effectiveness under serious distortion condition. Compared with the standard deep neural network, TFCNN shows 76.4% network parameters complexity reduction.

摘要

深度神经网络已被用于补偿水下可见光通信(UVLC)系统中的非线性失真。考虑到均衡性能和网络复杂度之间的权衡是实际应用中的首要任务。在本文中,我们提出了一种新颖的混合频域辅助时间卷积神经网络(TFCNN),并将其作为注意力机制的后置均衡器应用于CAP调制的UVLC系统中。实验表明,当其他均衡器在严重失真条件下失效时,所提出的TFCNN能够实现更好的均衡性能,并将误码率(BER)保持在3.8×10的7%硬判决前向纠错(HD-FEC)极限以下。与标准深度神经网络相比,TFCNN的网络参数复杂度降低了76.4%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验