Suppr超能文献

用于自由空间光通信的基于深度神经网络的单次波前传感

Single-shot wavefront sensing with deep neural networks for free-space optical communications.

作者信息

Wang Minghao, Guo Wen, Yuan Xiuhua

出版信息

Opt Express. 2021 Feb 1;29(3):3465-3478. doi: 10.1364/OE.412929.

Abstract

Applying deep neural networks in image-based wavefront sensing allows for the non-iterative regression of the aberrated phase in real time. In view of the nonlinear mapping from phase to intensity, it is common to utilize two focal plane images in the manner of phase diversity, while algorithms based on only one focal plane image generally yield less accurate estimations. In this paper, we demonstrate that by exploiting a single image of the pupil plane intensity pattern, it is possible to retrieve the wavefront with high accuracy. In the context of free-space optical communications (FSOC), a compact dataset, in which considerable low-order aberrations exist, is generated to train the EfficientNet which learns to regress the Zernike polynomial coefficients from the intensity frame. The performance of ResNet-50 and Inception-V3 are also tested in the same task, which ended up outperformed by EfficientNet by a large margin. To validate the proposed method, the models are fine-tuned and tested with experimental data collected in an adaptive optics platform.

摘要

将深度神经网络应用于基于图像的波前传感可实现像差相位的实时非迭代回归。鉴于从相位到强度的非线性映射,通常以相位分集的方式利用两个焦平面图像,而仅基于一个焦平面图像的算法通常会产生不太准确的估计。在本文中,我们证明了通过利用光瞳平面强度图案的单个图像,可以高精度地恢复波前。在自由空间光通信(FSOC)的背景下,生成了一个存在大量低阶像差的紧凑数据集,用于训练从强度帧中学习回归泽尼克多项式系数的EfficientNet。还在同一任务中测试了ResNet-50和Inception-V3的性能,结果它们的表现远远不如EfficientNet。为了验证所提出的方法,对模型进行了微调,并使用在自适应光学平台上收集的实验数据进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验