R&D Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland.
R&D Science and Emerging Technologies, Aerogen Ltd, Galway, Ireland
BMJ Open Respir Res. 2021 Mar;8(1). doi: 10.1136/bmjresp-2020-000739.
The COVID-19 pandemic has highlighted the need for alternative short-term, reliable means to aid in the treatment of patients requiring ventilatory support. Concurrent aerosol drug delivery is often prescribed to such patients. As such, this study examines one such short-term option, the disposable gas-powered transport ventilator to effectively deliver aerosol therapy. Factors such as aerosol generator type, patient breathing pattern, humidification and nebuliser position within the respiratory circuit were also examined.
Aerosol drug delivery characterisation was undertaken using two different disposable transport ventilators (DTVs). Two different nebuliser types, a closed circuit vibrating mesh nebuliser (VMN) and an open circuit jet nebuliser (JN), at different locations in a respiratory circuit, proximal and distal to an endotracheal tube (ETT), with and without passive humidification, were evaluated in simulated adult and paediatric patients.
Placement of a nebuliser proximal to the ETT (VMN: 25.19%-34.15% and JN: 3.14%-8.92%), and the addition of a heat and moisture exchange filter (VMN: 32.37%-40.43% and JN: 5.60%-9.91%) resulted in the largest potential lung dose in the adult patient model. Irrespective of nebuliser position and humidification in the respiratory circuit, use of the VMN resulted in the largest potential lung dose (%). A similar trend was recorded in the paediatric model data, where the largest potential lung dose was recorded with both nebuliser types placed proximal to the ETT (VMN: 8.12%-10.89% and JN: 2.15%-3.82%). However, the addition of a heat and moisture exchange filter had no statistically significant effect on the potential lung dose (%) a paediatric patient would receive (p>>0.05).
This study demonstrates that transport ventilators, such as DTVs, can be used concurrently with aerosol generators to effectively deliver aerosolised medication in both adult and paediatric patients.
COVID-19 大流行凸显了需要替代的短期、可靠手段来帮助治疗需要通气支持的患者。通常会为这些患者同时开具气溶胶药物输送。因此,本研究检查了一种这样的短期选择,即一次性气动转运呼吸机,以有效地输送气溶胶治疗。还检查了气溶胶发生器类型、患者呼吸模式、呼吸回路中的加湿和雾化器位置等因素。
使用两种不同的一次性转运呼吸机(DTV)对气溶胶药物输送特性进行了研究。在呼吸回路中不同位置(靠近和远离气管内管(ETT))、带有和不带有被动加湿的两种不同雾化器类型(密闭式振动网式雾化器(VMN)和开放式射流雾化器(JN))在模拟的成年和儿科患者中进行了评估。
将雾化器放置在 ETT 近端(VMN:25.19%-34.15%和 JN:3.14%-8.92%),并添加热湿交换过滤器(VMN:32.37%-40.43%和 JN:5.60%-9.91%)可使成年患者模型中最大的潜在肺部剂量。无论雾化器在呼吸回路中的位置和加湿情况如何,使用 VMN 均可使最大潜在肺部剂量(%)。儿科模型数据中也记录到了类似的趋势,其中两种雾化器类型均放置在 ETT 近端时,最大潜在肺部剂量最大(VMN:8.12%-10.89%和 JN:2.15%-3.82%)。然而,添加热湿交换过滤器对儿科患者接受的潜在肺部剂量(%)没有统计学上的显著影响(p>>0.05)。
本研究表明,转运呼吸机,如 DTV,可与气溶胶发生器同时使用,以在成年和儿科患者中有效地输送雾化药物。