Khatua J, Arh T, Mishra Shashi B, Luetkens H, Zorko A, Sana B, Rao M S Ramachandra, Nanda B R K, Khuntia P
Department of Physics, Indian Institute of Technology Madras, Chennai, 600036, India.
Quantum Centre for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, 600036, India.
Sci Rep. 2021 Mar 26;11(1):6959. doi: 10.1038/s41598-021-84876-5.
Frustrated magnets based on oxide double perovskites offer a viable ground wherein competing magnetic interactions, macroscopic ground state degeneracy and complex interplay between emergent degrees of freedom can lead to correlated quantum phenomena with exotic excitations highly relevant for potential technological applications. By local-probe muon spin relaxation ([Formula: see text]SR) and complementary thermodynamic measurements accompanied by first-principles calculations, we here demonstrate novel electronic structure and magnetic phases of Ba[Formula: see text]MnTeO[Formula: see text], where Mn[Formula: see text] ions with S = 5/2 spins constitute a perfect triangular lattice. Magnetization results evidence the presence of strong antiferromagnetic interactions between Mn[Formula: see text] spins and a phase transition at [Formula: see text] = 20 K. Below [Formula: see text], the specific heat data show antiferromagnetic magnon excitations with a gap of 1.4 K, which is due to magnetic anisotropy. [Formula: see text]SR reveals the presence of static internal fields in the ordered state and short-range spin correlations high above [Formula: see text]. It further unveils critical slowing-down of spin dynamics at [Formula: see text] and the persistence of spin dynamics even in the magnetically ordered state. Theoretical studies infer that Heisenberg interactions govern the inter- and intra-layer spin-frustration in this compound. Our results establish that the combined effect of a weak third-nearest-neighbour ferromagnetic inter-layer interaction (owing to double-exchange) and intra-layer interactions stabilizes a three-dimensional magnetic ordering in this frustrated magnet.
基于氧化物双钙钛矿的受挫磁体提供了一个可行的基础,其中相互竞争的磁相互作用、宏观基态简并以及新兴自由度之间的复杂相互作用可导致具有奇异激发的关联量子现象,这与潜在的技术应用高度相关。通过局部探针μ子自旋弛豫(μSR)以及伴随第一性原理计算的互补热力学测量,我们在此展示了Ba₂MnTeO₆的新型电子结构和磁相,其中具有S = 5/2自旋的Mn⁴⁺离子构成了一个完美的三角晶格。磁化结果证明了Mn⁴⁺自旋之间存在强反铁磁相互作用以及在T = 20 K时的相变。在T以下,比热数据显示出具有1.4 K能隙的反铁磁磁振子激发,这是由于磁各向异性所致。μSR揭示了有序态中静态内场的存在以及远高于T时的短程自旋关联。它进一步揭示了在T时自旋动力学的临界慢化以及即使在磁有序态下自旋动力学的持续存在。理论研究推断海森堡相互作用支配了该化合物中的层间和层内自旋受挫。我们的结果表明,弱的第三近邻铁磁层间相互作用(由于双交换)和层内相互作用的综合效应使这种受挫磁体中的三维磁有序得以稳定。