Suppr超能文献

基于去卷积、最大斜率和 Patlak 方法的胰腺腺癌计算机断层灌注分析——诊断准确性评估和截断值的可互换性。

Computed Tomography Perfusion Analysis of Pancreatic Adenocarcinoma using Deconvolution, Maximum Slope, and Patlak Methods - Evaluation of Diagnostic Accuracy and Interchangeability of Cut-Off Values.

机构信息

Clinic of Diagnostic and Interventional Radiology, University of Heidelberg, Germany.

Diagnostic Imaging Center, Radiologie Darmstadt, Germany.

出版信息

Rofo. 2021 Sep;193(9):1062-1073. doi: 10.1055/a-1401-0333. Epub 2021 Mar 26.

Abstract

PURPOSE

The goal of this study was to evaluate the diagnostic accuracy of perfusion computed tomography (CT) parameters obtained by different mathematical-kinetic methods for distinguishing pancreatic adenocarcinoma from normal tissue. To determine cut-off values and to assess the interchangeability of cut-off values, which were determined by different methods.

MATERIALS AND METHODS

Perfusion CT imaging of the pancreas was prospectively performed in 23 patients. 19 patients with histopathologically confirmed pancreatic adenocarcinoma were included in the study. Blood flow (BF), blood volume (BV) and permeability-surface area product (PS) were measured in pancreatic adenocarcinoma and normal tissue with the deconvolution (BF, BV, PS), maximum slope (BF), and Patlak methods (BV, PS). The interchangeability of cut-off values was examined by assessing agreement between BF, BV, and PS measured with different mathematical-kinetic methods.

RESULTS

Bland-Altman analysis demonstrated poor agreement between perfusion parameters, measured with different mathematical-kinetic methods. According to receiver operating characteristic (ROC) analysis, PS measured with the Patlak method had the significantly lowest diagnostic accuracy (area under ROC curve = 0.748). All other parameters were of high diagnostic accuracy (area under ROC curve = 0.940-0.997), although differences in diagnostic accuracy were not statistically different. Cut-off values for BF of ≤ 91.83 ml/100 ml/min and for BV of ≤ 5.36 ml/100 ml, both measured with the deconvolution method, appear to be the most appropriate cut-off values to distinguish pancreatic adenocarcinoma from normal tissue.

CONCLUSION

Perfusion parameters obtained by different methods are not interchangeable. Therefore, cut-off values, which were determined using different methods, are not interchangeable either. Perfusion parameters can help to distinguish pancreatic adenocarcinoma from normal tissue with high diagnostic accuracy, except for PS measured with the Patlak method.

KEY POINTS

· Perfusion CT parameters showed high diagnostic accuracy in differentiating between pancreatic adenocarcinoma and normal tissue.. · Only PS measured with the Patlak method showed a significantly lower diagnostic accuracy.. · Perfusion parameters measured with different mathematical-kinetic methods are not interchangeable.. · A specific cut-off value must be determined for each method and each perfusion parameter..

CITATION FORMAT

· Koell M, Klauss M, Skornitzke S et al. Computed Tomography Perfusion Analysis of Pancreatic Adenocarcinoma with the Deconvolution, Maximum Slope, and Patlak Methods - Evaluation of Diagnostic Accuracy and Interchangeability of Cut-Off Values. Fortschr Röntgenstr 2021; 193: 1062 - 1073.

摘要

目的

本研究旨在评估不同数学-动力学方法获得的灌注 CT 参数在鉴别胰腺腺癌与正常组织方面的诊断准确性。为了确定截断值并评估不同方法确定的截断值的可互换性。

材料与方法

前瞻性对 23 例患者进行胰腺灌注 CT 成像。19 例经组织病理学证实的胰腺腺癌患者纳入本研究。使用解卷积(BF、BV、PS)、最大斜率(BF)和 Patlak 方法在胰腺腺癌和正常组织中测量血流(BF)、血容量(BV)和渗透率-表面积产物(PS)。通过评估不同数学动力学方法测量的 BF、BV 和 PS 之间的一致性,检查截断值的可互换性。

结果

Bland-Altman 分析表明,不同数学动力学方法测量的灌注参数之间一致性较差。根据接收者操作特征(ROC)分析,使用 Patlak 方法测量的 PS 具有最低的诊断准确性(ROC 曲线下面积为 0.748)。所有其他参数的诊断准确性均较高(ROC 曲线下面积为 0.940-0.997),尽管诊断准确性的差异无统计学意义。使用解卷积法测量的 BF 截断值≤91.83ml/100ml/min 和 BV 截断值≤5.36ml/100ml,似乎是区分胰腺腺癌和正常组织的最佳截断值。

结论

不同方法获得的灌注参数不可互换。因此,使用不同方法确定的截断值也不可互换。灌注参数可以帮助高准确性地区分胰腺腺癌和正常组织,除了使用 Patlak 方法测量的 PS 外。

关键点

· 灌注 CT 参数在鉴别胰腺腺癌与正常组织方面具有较高的诊断准确性。· 仅使用 Patlak 方法测量的 PS 显示出显著较低的诊断准确性。· 使用不同数学动力学方法测量的灌注参数不可互换。· 必须为每种方法和每个灌注参数确定特定的截断值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验