Suppr超能文献

混合蓝藻毒素模型:将环境变量和毒素共现与人类暴露风险联系起来。

Cyanotoxin mixture models: Relating environmental variables and toxin co-occurrence to human exposure risk.

机构信息

US Geological Survey, Upper Midwest Water Science Center, 2280 Woodale Drive, Mounds View, MN 55112, USA; North Dakota State University, Environmental and Conservation Sciences Program, Fargo, ND 58102, USA.

US Geological Survey Ohio Water Microbiology Laboratory, 6460 Busch Blvd STE 100, Columbus, OH, USA.

出版信息

J Hazard Mater. 2021 Aug 5;415:125560. doi: 10.1016/j.jhazmat.2021.125560. Epub 2021 Mar 6.

Abstract

Toxic cyanobacterial blooms, often containing multiple toxins, are a serious public health issue. However, there are no known models that predict a cyanotoxin mixture (anatoxin-a, microcystin, saxitoxin). This paper presents two cyanotoxin mixture models (MIX) and compares them to two microcystin (MC) models from data collected in 2016-2017 from three recurring cyanobacterial bloom locations in Kabetogama Lake, Voyageurs National Park (Minnesota, USA). Models include those using near-real-time environmental variables (readily available) and those using additional comprehensive variables (based on laboratory analyses). Comprehensive models (R = 0.87 MC; R = 0.86 MIX) explained more variability than the environmental models (R = 0.58 MC; R = 0.57 MIX). Although neither MIX model was a better fit than the MC models, the MIX models produced no false negatives in the calibration dataset, indicating that all observations above regulatory guidelines were simulated by the MIX models. This is the first known use of Virtual Beach software for a cyanotoxin mixture model, and the methods used in this paper may be applicable to other lakes or beaches.

摘要

有毒蓝藻水华常常含有多种毒素,是一个严重的公共卫生问题。然而,目前还没有已知的模型可以预测一种蓝藻毒素混合物(anatoxin-a、微囊藻毒素、石房蛤毒素)。本文提出了两种蓝藻毒素混合物模型(MIX),并将其与 2016 年至 2017 年在明尼苏达州沃耶捷戈马湖(美国)三个反复出现的蓝藻水华地点收集的数据中的两种微囊藻毒素(MC)模型进行了比较。这些模型包括使用近实时环境变量(易于获得)的模型和使用额外全面变量(基于实验室分析)的模型。综合模型(MC 的 R = 0.87;MIX 的 R = 0.86)比环境模型(MC 的 R = 0.58;MIX 的 R = 0.57)解释了更多的可变性。尽管两种 MIX 模型都不如 MC 模型拟合得好,但 MIX 模型在校准数据集中没有产生假阴性,这表明 MIX 模型模拟了所有高于监管指南的观测值。这是首次在蓝藻毒素混合物模型中使用虚拟海滩软件,本文中使用的方法可能适用于其他湖泊或海滩。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验