Suppr超能文献

β-半乳糖苷酶的高岭石吸附固定化和包埋在纤维素纳米晶体基质中。

Immobilization of β-galactosidase by halloysite-adsorption and entrapment in a cellulose nanocrystals matrix.

机构信息

Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.

Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.

出版信息

Biochim Biophys Acta Gen Subj. 2021 Jun;1865(6):129896. doi: 10.1016/j.bbagen.2021.129896. Epub 2021 Mar 24.

Abstract

BACKGROUND

Immobilization allows easy recovery and reuse of enzymes in industrial processes. In addition, it may enhance enzyme stability, allowing prolonged use. A simple and novel method of immobilizing β-galactosidase is reported. Effects of immobilization on the enzyme characteristics are explained. β-Galactosidase is well established in dairy processing and has emerging applications in novel syntheses.

METHODS

β-Galactosidase was immobilized by physical adsorption on halloysite, an aluminosilicate nanomaterial. Optimal conditions for adsorption were identified. The optimally prepared halloysite-adsorbed enzyme was then entrapped in a porous matrix of nanocrystals of sulfated bacterial cellulose, to further enhance stability.

RESULTS

Under optimal conditions, 89.5% of the available protein was adsorbed per mg of halloysite. The most active and stable final immobilized biocatalyst had 1 part by mass of the enzyme-supporting halloysite particles mixed with 2 parts of cellulose nanocrystals. Immobilization raised the optimal pH of the catalyst to 7.5 (from 6.0 for the native enzyme) and temperature to 55 °C (40 °C for the native enzyme). During storage at 25 °C, the immobilized enzyme retained 75.8% of initial activity after 60 days compared to 29.2% retained by the free enzyme.

CONCLUSION

The immobilization method developed in this work enhanced enzyme stability during catalysis and storage. Up to 12 cycles of repeated use of the catalyst became feasible.

GENERAL SIGNIFICANCE

The simple and rapid immobilization strategy of this work is broadly applicable to enzymes used in diverse bioconversions.

摘要

背景

固定化可方便地回收和再利用工业过程中的酶。此外,它还可以增强酶的稳定性,从而延长其使用寿命。本文报道了一种固定化β-半乳糖苷酶的简单而新颖的方法。解释了固定化对酶特性的影响。β-半乳糖苷酶在乳制品加工中得到了广泛应用,并在新的合成中有了新的应用。

方法

β-半乳糖苷酶通过物理吸附在纳米管状蒙脱石上进行固定化,纳米管状蒙脱石是一种铝硅酸盐纳米材料。确定了吸附的最佳条件。然后,将最佳制备的蒙脱石吸附酶包埋在细菌纤维素纳米晶体的多孔基质中,以进一步提高稳定性。

结果

在最佳条件下,每毫克蒙脱石吸附了 89.5%的可用蛋白质。最活跃和最稳定的最终固定化生物催化剂中,每质量份的酶载体蒙脱石颗粒与 2 份纤维素纳米晶体混合。固定化将催化剂的最佳 pH 值提高到 7.5(天然酶为 6.0),最佳温度提高到 55°C(天然酶为 40°C)。在 25°C 下储存时,固定化酶在 60 天后保留了初始活性的 75.8%,而游离酶保留了 29.2%。

结论

本工作开发的固定化方法增强了催化和储存过程中酶的稳定性。该催化剂重复使用多达 12 次成为可能。

意义

这项工作中简单快速的固定化策略广泛适用于各种生物转化中使用的酶。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验